
'AD-A115 853 MITRE CORP BEDFORDCMA F/6 9/2
USER-SYSTEM IN1TERFACE DESIGN FOR COMPUTER..MASEO INFORMATION SYS--ETC(U)
APR 82 S SMITH F19628-8I-C-0OO0S

UNCLASSIFIED MTR-8464 ESDTR-82-132 L

0 E3 EEEEE
mohEEohEEmhE.E
EohEEEEEmhEEEE
EEEEEEEEEEEEEE
EEEEEEEEEEEmhE

ESD-TR-82-132 MTR-8464

USER-SYSTEM INTERFACE DESIGN

FOR

COMPUTER-BASED INFORMATION SYSTEMS

By

_SIDNEY L. SMITH

APRIL 1982

Prepared for

DEPUTY FOR TECHNICAL OPERATIONS AND PRODUCT ASSURANCE
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Massachusetts

DTIC
ELECTE

Juti 2 11982
k Eq

Approved for public releae;

distribution unlimited. Project No. 572C

CD Prepared by

C) THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-81-C-0001

3 2 0 21 140
- ; J - II ' 'r " . . . "". . . .

When U.S. Government drawings, specifications, or other data are used for any
purpose other then a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way
supplied the sid drawings, specifications, or other data is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that mey in any way be related thereto.

Do not return this copy. Retain or destroy.

AKIKO P. SUDANO, 2Lt, USAi 'JAMES W. NEELY, i .,-Lt Col, USAF
Project Officer Chief, Computer Engineering

Applications Division

FOR THE COMMANDER

WALTER W. TURGISS
Acting Director, E/gineering and Test
Deputy for Technical Operations

and Product Assurance

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION AGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESS|IN NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

USER-SYSTEM INTERFACE DESIGN FOR COMPUTER-BASED
INFORMATION SYSTEMS

6. PERFORMING ORG. REPORT NUMBER
MTR-8464

7. AUTHOR(&) N. CONTRACT OR GRANT NUMBER(*)

SIDNEY L. SMITH F19628-81-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

The MITRE Corporation
P. 0. Box 208,
Bedford, MA 01730 Prolect No. 572C

I1, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Technical Operations and Product Assurance APRIL 1982
Electronic Systems Division, AFSC 13. NUMBER OF PAGES
Hanscom Air Force Base, MA 01731 190

14, MONITORING AGENCY NAME S ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED

ISa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

"'. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side if necessary and Identify by block number)

COMPUTER-BASED INFORMATION SYSTEMS
DESIGN GUIDELINES
REQUIREMENTS DEFINITION
USER-SYSTEM INTERFACE

20. ABSTRACT (Continue on rev'eree side if neceeary and identify by block number)

"For a broad range of computer-based information systems, the user-system

interface (USI) can require a sizable investment in software design. In current
practice, there is no coherent methodology for USI design, but efforts to
establish USI design standards have begun. This report summarizes the present
state of the art, including a recent survey of USI design practice (Smith,
1981b), and proposes several aids to USI design.
The first step in USI software design is to decide what is needed. A

structured checklist of USI functional caoabilities is ro_.sa-__j~r'
DD I 1473 EDITION OF I NOV 65 IS OBSOLETE

-SE|I[CURITY CLASSIFICATION OF
r

THIS PAGE (in Dots Etarod

L7

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(an Date 9E0 M4j

20. (concluded)

*to aid in requirements definition. This checklist updates a previously

published version (Smith, 1981a).

Once USI requirements have been defined, the next step is to provide design

guidance for the software needed to implement those requirements. A compilation
of 375 design guidelines is offered here for major USI functional areaa of data
entry, data display, and sequence control, revising and enlarging previously
proposed guidelines (Smith, 1981a).

A third step leading to good USI design is careful documentation. USI
documentation is needed to oermit design review before software implementation,
and continuing design coordination thereafter. Potential computer aids are
briefly described for generation of draft USI functional specifications, the
earliest stage of design documentation.-

j!
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEboEn Dae Ente.ed)

A- J. .

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project No. 572C. The contract is sponsored by the Electronic
Systems Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

14TI
iii TA

TABLE OF CONTENTS

page

LIST OF ILLUSTRATIONS vi

SECTION 1 INTRODUCTION 1

SECTION 2 BACKGROUND 3
INFORMATION SYSTEMS 3
USER-SYSTEM INTERFACE (USI) 4
USI SOFTWARE 6
DESIGN DEFICIENCIES 7
DESIGN PRACTICE 8

SECTION 3 USI REQUIREMENTS DEFINITION 11
GENERAL 11
WORK ENVIRONMENT 11
INTERFACE HARDWARE 12
USER CHARACTERISTICS 13
TASK ANALYSIS 17
FUNCTIONAL CAPABILITIES CHECKLIST 20
USE OF THE CHECKLIST 22

SECTION 4 USI DESIGN GUIDELINES 24
CURRENT STATUS 24
GUIDELINES COMPILATION 27
FUTURE DEVELOPMENT 29

SECTION 5 USI DOCUMENTATION 32
CURRENT STATUS 32
SPECIFICATION GENERATION 33

1.~DESIGN DOCUMENTATION 36
DESIGN REVIEW 38
DESIGN COORDINATION 39

REFERENCES 42

APPENDIX A USI FUNCTIONAL CAPABILITIES CHECKLIST 47

APPENDIX B DESIGN GUIDELINES FOR DATA ENTRY FUNCTIONS 67

APPENDIX C DESIGN GUIDELINES FOR DATA DISPLAY FUNCTIONS 91

APPENDIX D DESIGN GUIDELINES FOR SEQUENCE CONTROL FUNCTIONS 129

APPENDIX E REFERENCES FOR DESIGN GUIDELINES 175

.. .-........

LIST OF ILLUSTRATIONS

Paze

Figure 1. Factors Influencing User-System Interf ace Design 5

Figure 2. Steps in the USI Design Process 18

Figure 3. Future USI Guidelines Development 30

Figure 4. Sample Output of Patterned Prose 35

vi

SECTION 1

INTRODUCTION

In system acquisition programs managed by the Air Force
Electronic Systems Division (ESD), special attention must be given
to design of the user-system interface (USI). In recent years, two
ESD reports have dealt with this subject, recommending improvements
to USI design methodology (Smith, 1980a; 1981a). Work in this area
is continuing under MITRE Project 5720 for USI requirements
definition, and under Air Force Program Element PE 64740F (MITRE
Project 5220) for the development of USI design guidelines.

This present report supersedes the two previous reports noted
above. The earlier text has been enlarged and updated to include
results from a recent survey of USI design issues (Smith, 1981b).
Other material from the earlier reports has been preserved and
restated here to provide comprehensive coverage of the subject.

Discussion of information systems is couched in general terms
throughout this report, to acknowledge that USI design problems and
their possible solutions are common to many different systems.
Improvements to USI design methodology proposed here will be
evaluated in their specific application to ESD/MITRE development of
Air Force command, control and communication systems.

Section 2 of this report provides background discussion of the
user interface in information systems, and particularly the
important role of USI software. It is argued that poor USI design
can contribute to system failure, and that poor design may result
from deficiencies in current USI design practice.

Section 3 discusses the process of defining USI requirements.

determine data handling requirements with implications for USI

software design, and the interpretation of those requirements in
terms of functional capabilities required for the user interface. A
checklist of USI functional capabilities, hierarchically organized,

is proposed as an aid for defining USI requirements.

The current version of that checklist is presented in Appendix
A to this report. The checklist has been modified in minor respects
from previously published versions.

Section 4 discusses means for providing more effective guidance
to USI design, with emphasis on the design of USI software.
Available USI design guidelines, in scattered published sources,
provide only partial coverage of limited usefulness. It is
recommended that a comprehensive compilation of USI design
guidelines be undertaken as a collaborative effort by people
concerned with this problem.

Examples of guidelines thiat should prove useful in USI design
are provided as appendices to this report. Appendix B lists designI
guidelines pertaining to data entry functions. Appendix C lists
guidelines for data display, an initial compilation for this report.
Appendix D lists guidelines for sequence control. The two
previously published lists, those for data entry and sequence
control, have been revised and expanded somewhat in this new

version, following suggestions made by reviewers.I
Section 5 discusses USI design documentation. Improvements in

USI documentation are needed, but no specific recommendations are
made at this time. In a current experiment, the USI functional
capabilities checklist is being redesigned as an on-line computer
aid for automatic conversion of checklist entries into draft written
specifications, a technique which may offer some promise for the
future.

This report concludes with a list of referenced documents. A
separate listing of reference sources cited in connection with
design guidelines is provided in Appendix E.

Work is continuing at ESD/MITRE on the development, application
and evaluation of tools for USI requirements definition (the
checklist) and for design guidance Cthe guidelines). This work
would benefit from the help of people in other organizations as
well. Can you propose additions or changes to the checklist, or to
the design guidelines? Can you apply and help evaluate these design
tools in your own work? If so, please contact:

Sidney L. Smith
The MITRE Corporation

Bedford, Massachusetts 01730

-2-

SECTION 2

BACKGROUND

For a broad range of computer-based information systems, the
user-system interface (USI) can require a sizable software
investment and may suffer from design deficiencies that handicap
system performance. No comprehensive guidance is currently
available in design practice, but efforts to develop USI design
standards have begun.

INFORMATION SYSTEMS

Current use of computers covers a broad range of applications.
At one extreme are large, general-purpose computer installations,
used by different people for different purposes. Users are expected
to provide exact instructions (a computer program) in order to
request data processing. Many users have programming skills. All
users must have some knowledge of the system and its capabilities.

At the other extreme are the small, special-purpose computers
used increasingly as components within larger systems. Such
component computers may regulate the ignition of an automobile, or
the tuning of a television set. Their net effect is to help make
system operation easier. The user does not interact directly with
component computers, and indeed may not even know they are there.

Between these extremes of general and very specialized
application, computers are used to support a wide variety of what
are commonly called information systems. Information systems are
task-oriented rather than general purpose, being designed and
dedicated to help perform defined jobs. Applications range from
relatively simple data entry and retrieval (e.g., airline

* reservations) through more complex monitoring and control tasks
(inventory control, process control, air traffic control), to jobs
requiring long-term analysis and planning. Military command systems
fall within this range of applications.

* Many information systems are event-driven, with consequent time
pressure on their users. For such systems, job performance can be
facilitated by good design, or handicapped by poor design. Because
system design will have a critical effect on performance, required
data handling capabilities are usually defined by functional
specifications established in advance of design.

-3-

The users of information systems must interact with a computer
in some explicit fashion to accomplish the data handling tasks
needed to get their jobs done. The users of information systems
differ in ability, training and job experience. Users may be keenly
concerned with task performance, but they probably have little
knowledge of (or interest in) their computer tools. Design of the
user-system interface must take these human factors into account.

USER-SYSTEM INTERFACE (USI)

What is the user-system interface? Here the phrase is defined
broadly to include all aspects of system design that affect a user's
participation in data handling transactions. A variety of factors
are involved in the user-system interface, as indicated in Figure 1.

Directly observable aspects of the USI include the physical
work environment and the hardware facilities at the user's work
station. Such physical aspects, sometimes called the man-machine
interface, have been the subject of conventional human engineering
study, where the concern is for proper illumination, seating,
workplace arrangement, keyboard layout, display contrast, symbol
size, etc. Good design of the physical workplace is important, of
course, but by itself is not sufficient to ensure effective job
performance.

Also important are less tangible aspects of information system
design -- the ways in which data are stored and manipulated,
including paper files and forms, if any, and the procedures and
processing logic that govern data handling transactions. Forms,
procedures and logic involve software design, the design of computer
programs to permit hardware (and paper) to be used in conjunction
with automated data processing.

If the USI is conceived in these broad terms, to encompass all
factors influencing user-system interaction, then to say that the
USI is critical to successful system operation is to state the
obvious. In any automated information system, whether its work
stations are used for data input, calculation, planning, management
or control, effective USI design is required for effective
performance. Task analysis, review of operating procedures,
equipment selection, workspace configuration, and especially USI
software design -- all must be handled with care.

-4-

Envirmnl Capaiities

Harwa

Figres .FcosIfunigUe-ytmItraeDsg

* iU-5-

USI SOFTWARE

The critical role of USI software in system design poses a
special challenge to human factors specialists, recognized a decade
ago by Parsons:

...what sets data processing systems apart as a special
breed? The function of each switch button, the functional
arrangement among the buttons, the size and distribution
of elements within a display are established not in the
design of the equipment but in how the computer is
programmed. Of even more consequence, the 'design' in the
programs establishes the contents of processed data
available to the operator and the visual relationships
among the data. In combination with or in place of
hardware, it can also establish the sequence of actions
which the operator must use and the feedback to the
operator concerning those actions.

(1970, page 169)

Current interest in USI software design is reflected in phrases
such as "software psychology" (cf. Shneiderman, 1980). But USI
design cannot be the concern only of the psychologist or the human
factors engineer. It is a significant part of information system
design that must engage the attention of system developers,
designers, and ultimately system users as well.

Not only is USI software design critical to system performance,
it can also represent a sizable investment of programming effort
during initial system development, and during subsequent system
modification ("software maintenance") to accommodate changing
operational requirements thereafter. Just how sizable is that
investment? The answer, of course, will depend upon the particular
type of information system being considered.

In a recent survey (Smith, 1981b), people involved in
information system design were asked to estimate the percent of
operational software devoted to implementing the USI. Respondents
were asked to give minimum, average and maximum estimates for the
type of system they were describing. Mlean estimates for 31
respondents were 18.3 percent "as a minimum", 34.3 percent "on the
average", and 47.7 percent "at the most". That is to say, the
respondents postulated a sizable variability in their on-the-average
estimates. Overall, the average estimate that USI design comprises
a bit more than 30 percent of operational software seems a
reasonable figure.

-6-

As it happened, each respondent referred to a different type of
system, and their estimates differed accordingly. The respondent
offering the lowest estimates gave an on-the-average figure of 3
percent. At the other extreme, the respondent offering the highest
estimates gave and on-the-average figure of 80 percent. This range
reflects common experience that some computer systems require a much
higher investment in USI design than others, depending upon their
purpose.

DESIGN DEFICIENCIES

In every information system there are probably deficiencies in
USI design, some major, some minor. This is not the place to
belabor the point with a compendium of bad examples. The topic has
been dealt with by Ramsey and Atwood (1979), and by other writers.
But a general discussion of the potential consequences of poor USI
design is probably pertinent here.

Given the broad definition for the user-system interface that
was proposed above, it is obvious that deficiencies in USI design
may result in degraded system performance. To be sure, users can
sometimes compensate for poor design with extra effort. Probably no
single USI design flaw, in itself, will cause system failure. But
there is a limit to how well users can adapt to a poorly designed
interface. As one deficiency is added to another, the cumulative
negative effects may eventually result in system failure, poor
performance, user complaints and/or developer dissatisfaction.

Outright system failure may sometimes be seen in abandoned

installations, or decreasing use of an automated information system
where use is optional. There may be retention of (or reversion to)

capabilities. If a system does fail in this way, the result is
disrupted operation, wasted time, effort and money, and failure to
achieve the potential benefits of automated data handling.

In a constrained environment, such as that of many military and
commercial information systems, the user may have little choice but
to make do with whatever interface design is provided. Here the
symptoms of poor USI design may appear in degraded system

performance. Frequent and/or serious errors in data handling may
result from confusing USI design. Tedious user procedures may slow
data processing, resulting in longer queues at the checkout counter,
the teller's window, the visa office, the truck dock, or any other
workplace where the potential benefits of automation are outweighed
by an unintended increase in human effort.

-7-

owed

In situations where degradation in system performance is not so
easily observed, symptoms of poor USI design may appear as user
complaints. The system may be described as hard to learn, or
clumsy, tiring and slow to use. The user's view of the system is
conditioned chiefly by experience with its interface. If USI design
is unsatisfactory, the user's image of the system will be negative,

regardless of any niceties of internal computer processing.
USI design may prove deficient from the broader perspective of

system developers, who are sometimes disappointed by discrepancies
between what was intended and what is actually achieved. Different
portions of the USI design may be implemented by different people,
who share no coon view of desired operational procedures. The
probable result is design inconsistency, forcing users to handle
different tasks differently, or even different transactions within
the same task, and thus imposing an unnecessary burden on both
learning and use of the system. System developers will be
justifiably critical of such design inconsistency, on behalf of the
eventual system users.

System developers may also worry about design inconsistency
among different systems. Within a large industrial firm, or within
a government agency or a military service, many different
information systems may be developed for different purposes in
different parts of the organization. Where USI design is
established independently for each system, the result could be to
impose a burden of incompatible habits on the user who must move
from one system to another. Conversely, some standardization of USI
design across systems might help to reduce user learning problems
and improve user performance.

Examples of inter-system inconsistencies of UST design are
currently being documented in a study of battlefield information
systems, sponsored by the Army Research Institute (ARI, 1979;
Sidorsky and Parrish, 1980). The objective of that study is to
develop USI design guidelines to help ensure system
inter-operability, from the user viewpoint, as well as to improve

the design of individual systems.

DESIGN PRACTICE

It seems fair to characterize present methods of USI software
design as art rather than science, depending more upon individual
judgment than systematic application of knowledge (Ramsey and
Atwood, 1979; 1980). As an art, USI design is best practiced by
experts, by specialists experienced in the human engineering of
computer systems. But such experts are not always available to help

-8-

guide system acquisition, and certainly cannot guide every step of
USI design at first hand. What seems needed is some way to embody
expert judgment in the form of explicit procedures and guidelines
for USI design.

USI design guidance is needed at several stages of system
development, to define USI software requirements in system
functional specification, to provide guidelines before USI software
design, and to permit design verification before implementation of
USI software. Unfortunately, there is little effective guidance for
USI design in present practice.

Consider the development of military information systems.
Military Specification HIL-H-48655B (1979) calls for a system
development sequence starting with requirements analysis, functional
specification and design verification. Actual USI software design
in system development will sometimes depart from this desired
sequence. There may be no explicit attempt to determine USI
requirements. Specifications may include only rudimentary
references to USI design, with general statements that the system
must be " easy to use". In the absence of more effective guidance,
both the design and implementation of USI software may becoma the
responsibility of programmers unfamiliar with operational
requirements. USI software may be produced slowly, while detection
and correction of design flaws occur only after system prototyping,
when software changes are difficult to make.

Human engineering standards and design handbooks have been of
little use to the software designer. MIL-STD-1472B (1974), a major
human engineering design standard for system procurement, was
concerned almost exclusively with hardware design ("knobs and
dials") and physical safety ("avoid sharp corners"). The recently
published human factors design handbook by Woodson (1981) contains
only three pages of general material on information processing (in a
total of approximately 1000 pages) and contains no reference to
computer systems in its index.

Some guides to USI software design might be reasoned by analogy
from hardware standards. Just as we should not design sharp corners
on hardware, we should not include hazardous features in user
software. Just as a physical step may be marked with a painted line
to keep us from tripping on it, so we may seek some way to signal
abrupt shifts in the logical steps of an interactive sequence. A
pushbutton reserved only for emergencies may be physically shielded
to prevent accidental activation. So too it is possible to provide
software protection in the USI to prevent accidental initiation of
critical actions. But such analogies do not take us very far.

* -9-

MIL-STD-483 refers only briefly to USI software design,
indicating that human performance/human engineering requirements
should specify "minimum times for human decision making, maximum
time for program responses, maximum display densities of
information, clarity requirements for displays, etc." (1970, page
43, paragraph 60.4.3.2.2.1)

MIL-STD-454F offers just one paragraph on the general subject
of human engineering:

Human engineering design criteria and principles shall be
applied in the design of electronic equipment so as to
achieve safe, reliable, and effective performance by
operator, maintenance and control personnel, and to
minimize personnel skill requirements and training time.
MIL-H-46855 shall be utilized as a guideline in program
planning and MIL-STD-1472 as a guideline in applying human
engineering design criteria. Quantitative human
engineering requirements shall be as specified in the
contract.

(1978, page 62-1)

In 1981, MIL-STD-1472 was published in a revised "C" version.
That new military standard includes nine pages dealing with USI
software design, in Section 5.15 titled "Personnel-Computer
Interface". Thus a modest beginning has been made, but much more is
needed. There are still no comprehensive guidelines available. The
question is, can needed USI design guidance be developed?

Air Force efforts to provide USI design guidance (Smith, 1980a;
1981a) have emphasized three aspects. First, USI functional
requirements should be defined early in system development. Second,
design guidelines should be established in relation to required
functional capabilities. Third, USI design should be documented in
a form to permit design review and verification prior to software
implementation. These three aspects of USI design guidance are
discussed in succeeding sections of this report.

-10-

SECTION 3

USI REQUIREMENTS DEFINITION

The first step in USI software design is to decide what is
needed. USI requirements definition must consider the work
environment, the interface hardware, the characteristics of the
people who will use the system, the data handling requirements of
their jobs, and the functional capabilities of the USI that are
needed in order to perform those jobs. A structured checklist of
USI functional capabilities is proposed to aid requirements
definition.

GENERAL

There is a generally held belief among people involved in
system development: the better you can define what is required, the
better the resulting design will be. Conversely, poor specification
of system requirements may lead to poor design.

In a recent survey (Smith, 1981b), 59 percent of people
concerned with USI design judge that USI requirements are not
adequately defined in system specifications. Only 15 percent report
adequate coverage. Many respondents, 68 percent, cite deficiencies
in system specification and design related to inadequate early
attention to USI requirements.

How can USI requirements definition be improved? A variety of
factors influencing USI design must be considered. Three frequently
cited factors are work environment, interface hardware, and user
characteristics. These factors are discussed separately in the
paragraphs below.

It can be argued, however, that all of these factors are
subsumed in some degree in task analysis of the data handling
functions that must be performed in an information system. The
balance of this section will discuss task analysis, and the
possibility of developing a checklist of functional capabilities to
help move from task analysis to USI requirements definition.

WORK ENVIRONMENT

In itself, the design of a work environment seldom fulfills
functional requirements directly. Instead, the general objective of
workspace design is to minimize constraints on functional

-11-

-- ii .

performance. In many information systems, the immediate work
environment is relatively benign, and does not constrain USI design.
But there are exceptions. For example, the noise, dirt and
confusion of movement at a truck dock may limit USI options
available for air cargo data entry (Smith 1975; 1976).

Even in clean, quiet office locations, poor workplace layout
can handicap job performance. Inaccessibility of paper files,
inadequate space at the user's work station, badly positioned
displays and keyboards, glare sources in unbalanced ambient
illumination, all take their toll. It can be argued that
environmental deficiencies such as these contribute in large measure
to user complaints of fatigue after long hours at a constrained work
station.

When an optimal work environment is not possible, some limits
on USI design may have to be imposed in order to accommodate
sub-optimal working conditions. As an example, mechanical vibration
in airborne command posts might hinder fine manipulations required
for lightpen use. A noisy environment might obscure voice output
displays and other auditory signals. A high ambient illumination,
such as experienced in an open control tower on a sunny day, might
reduce the effectiveness of visual displays, unless appropriate
shielding is provided.

Where a normal working environment can be assumed, it may be
possible to rely on standard procurement specifications and
engineering practice to produce a good design. Where unusual
working conditions must be accommodated, however, it will be
necessary to include a description of environmental constraints in
the USI design specification.

INTERFACE HARDWARE

Although it is usually the logic and software implementation of
USI design which prove critical, hardware choices can affect design
implementation and eventual system performance. Hardware here is
meant to include input devices, output display and signaling
devices, and also printouts, paper forms and other equipment which
may be used in conjunction with the USI. If the USI is used to
mediate user-to-user data transfer and message exchange, which is
becoming more common, then communication facilities should probably
also be included under this heading.

Functional specifications for hardware, such as those for
display capacity, legibility, etc., are reasonably well understood
in system development and will not be considered further in this

-12-

...

report. Such device capabilities may be included in a USI
functional specification, however, if physical requirements can be
determined in advance of USI design. Ideally, hardware
specification should follow and derive from functional design. In
practice, it may happen that system development must build upon and
hence be constrained by existing equipment.

The effect of hardware and associated procedural constraints on
USI design may be more subtle than suggested by physical equipment
specifications. The technique and format of data input may have to
accommodate the nature of the data source, paper forms being
transcribed, etc. For data output, display formats may have to be
adaptable to document printing and other constraints. For sequence
control, hardware choices can have a pervasive influence. As an
obvious example, the availability of a lightpen or other pointing
device for selection of control options will permit more flexible
display formatting than the use of multi-function keys which are
labeled in display margins.

Where anticipated hardware limitations will constrain USI
functional capabilities, such constraints should be indicated
clearly in the design specification, so that functional design can
be compromised as necessary. Where USI hardware can be chosen
freely, as in acquisition of a new system, it may be desirable not
to impose any special constraints except those implied in equipment
design standards. The inclusion of detailed equipment
"irequirements" in system specification may sometimes be supposed an
adequate substitute for the lack of detailed functional
specifications. In USI design, however, with its heavy dependence
on software for effective implementation, detailed hardware
specification may make good design harder to achieve rather than
easier.

USER CHARACTERISTICS

A challenging aspect of information system design is the broad
range of user characteristics that must be accommodated, including
people with widely different skills, training and experience --
managers as well as clerical personnel, hardware and software
technicians performing maintenance functions, even "box kickers" at
a truck dock in the automation of air cargo data handling (Smith,

17)There are various ways to categorize the different kinds of

users. One categorization distinguishes "operators" and "analysts"
from "service" personnel (Goodwin, 1978; see also Rouse, 1975). In
this view, an operator is a person performing a structured task,

-13-

usually at a forced pace, monitoring and controlling through system
outputs and inputs, making decisions and initiating actions through
the system within limited time constraints: e.g., radar track
monitoring; air traffic control; process control. An analyst
performs an unstructured task, usually self-paced, manipulates
system data to establish relationships, perhaps using on-line tools,
may rely also on data from other sources including past experience
to recognize problems and make decisions, which may not be made
immediately and may not be entered into the data processing system
for action: e.g., intelligence analysis; mission planning; message

* handling. Service personnel perform more routine clerical tasks,
* where the user is not the source of data being entered, data

retrieval is in response to specific query, transaction sequences
are highly structured, and may be performed at a forced pace under
pressure: e.g., making airline reservations; providing telephone
directory assistance; word processing jobs.

Although such categorization offers helpful descriptive
information of the user's role, it is largely differences among jobs
rather than differences among people that are being characterized.
Job differences can be defined better in the more specific context
of task analysis. In this present report, there will be no attempt
to label user differences in terms of job descriptions. No
distinction is intended here between the terms "user" and
operator"

Animportant distinction can be made between dedicated and
casual users (Martin, 1973). Information systems include both
kinds. A "de-'icated" operator in a surveillance job may spend
virtually full time monitoring computer-generated displays. Such a
person will generally receive extensive training, and the USI design
can be tailored to his presumed skills. A "casual" user might be an
intelligence analyst who interacts with a computer system only
periodically, and whose requirements for information retrieval are
wide ranging. Although this person may have been instructed in USI
procedures, perhaps being given a user's manual, his use of computer
aids may remain uncertain for an extended period unless on-line
guidance is incorporated in USI design. Although these examples are
cited to illustrate user characteristics, note again that they
actually reflect important differences in job requirements.

For any one category of user, individual differences in skill
may be considerable. In military systems, because of systematic
rotation of job assignments for personnel, today's naive user
becomes next year's expert, then to be replaced by another beginner.
This is true of many non-military systems as well. Such regular
personnel turnover implies the need for flexible job aids in USI
design, which can provide optional help to the novice user but which
can be bypassed by the expert.

-14-

Where there is high personnel turnover, low skill levels and
minimal user training, USI design must take that into account.
Interactive sequences should be configured as a routine series of
simple steps, with adequate guidance and on-line error correction
procedures to ensure effective user performance. For most
applications, however, both user characteristics and job demands
will require USI design offering more extensive capabilities, and
permitting more flexible use.

As a general objective, it can be argued that the USI design in
automated information systems should not require higher skills and
greater user effort than the manual procedures which are being
replaced. In practice this design objective is not always attained.
Some automated systems prove harder to use rather than easier, and
make increased demands upon their users.

In the Army REP cited earlier, the increasing demand for
skilled users caused by command automation is advanced as an
argument in favor of developing USI design guidelines:

The skill/demand mismatch is due in part to the fact that
the equipment/procedural configurations of existing and
projected systems have been devised without coordination
among proponents of different systems. As a result, very
little of the skill and know-how accrued from experience
with one system can be transferred to other systems.
Therefore, one of the long range goals of this project is
to promote functional standardization and modularization
of user/operator tasks and procedures in order to reduce
the amount of training and the skill levels required of
users/operators of fielded automated data processing
systems. Many of the procedures employed in the operation
of various automated systems are basically similar. Yet
from the user/operator's perspective each system is a new
situation with little carryover or transfer from previous
exposures to other systems. While it may be too early to
establish absolute "standards" for many system parameters,
a measure of consistency would go a long way toward
increasing effectiveness, reducing personnel costs and
making battlefield automated systems more approachable to
Army users/operators.

AI19)

This call for consistency is common to all recommendations on
USI design, but is particularly important in settings that involve
frequent rotation of personnel. To the extent that jobs may be
similar in different information system applications, the operator
transferred from one system to another ought to be able to use

-15-

- - - -- - -- - - - - -- - -.. IA

similar means to accomplish similar ends. Even for quite different
system applications, it may prove possible to introduce a coherent
general approach to USI design, so that the interface logic will
seem familiar to a person transferring to a new job.

If USI design is tailored to a particular user, as a personal
interface, then that individual's characteristics and preferences
can be taken into account. This is not usually done in information
system design. The future users are often unknown to the designer,
and in any case will probably be a mixed group. Under these
circumstances, accommodation of individual user differences can only
be provided in terms of flexible interface capabilities, permitting
each user some adjustment of USI design to individual needs.

If a system is to be used by a group with special
characteristics -- blind people, perhaps -- then USI design should
be modified accordingly. An example of this would be adaptation of
command languages for users with different linguistic backgrounds.

By and large, however, general user characteristics are assumed
in system design, within the limits of variability implied by each
job. To know the job is to know a great deal about the people who
will perform that job. So the emphasis in USI design soon shifts
from consideration of user characteristics to analysis of job
requirements, which is discussed next.

Before leaving this subject,'however, it may be helpful for the
developers and designers of information systems, to postulate some
general charar-teristics of prospective users. Assume that users
will be intelligent men and women with their own special skills.
These people will not necessarily be knowledgeable about computer
technology, may have little time to learn complicated interface
procedures, and will have different degrees of familiarity with the
system. Being human, these people will sometimes make mistakes,
especially when working under pressure, and good USI design must
take that into account.

These people are usually motivated toward effective job
performance in the face of operational demands. They will regard
automated data processing as a tool to aid job performance, with
little curiosity about the internal mechanisms of computing
machines. Users will tend to judge the entire system on the basis
of their personal experience with its interface. If the USI is
efficient and easy to use, they will like the system. But users

will be impatient and critical when handicapped by a clumsy
interface design.

-16-

I .I

TASK ANALYSIS

Fundamental to USt design is the analysis of user tasks. Some
general discussion is required here, to clarify both concepts and
terminology. A simplified summary of the design process is
presented in Figure 2. As indicated in that figure, analysis begins
with definition of the mission requirements of a proposed system,
the basic objectives to be accomplished. Those mission requirements
are then elaborated and translated, taking into account the proposed
operational employment concept, environmental, technological and
fiscal constraints, to define system operational requirements.

Operational requirements imply the performance of various
identifiable functions -- data sensing, data transmission, data
processing, etc. Analysis of those functions, in turn, establishes
more specific data processing requirements - - what data must enter
the system, what data must be stored, what combinations and
transformations of data are required, what kinds of information
should result from that processing.

Those data processing functions imply the specification of
tasks to accomplish particular ends. Some tasks may be performed
entirely by machine and thus affect USI design only indirectly if at
all. Because of the critical role of human judgment, however, and
the fact that much of the data to be processed must be generated
and/or evaluated by people, many tasks will involve the
participation of system users.

Tasks are often labeled in operational terms, i.e., as
activities a user must do -- scheduling, monitoring, text editing,
etc. In the course of task analysis, most data handling tasks can
be partitioned further into identifiable subtasks. Subtasks of text

4 editing, for example, would include such activities as adding or
deleting text, copying or moving text, paragraphing and pagination.

Subtasks, in turn, are often designed as a sequence of simple,
discrete transactions, such as entry of a single item of data. As
defined here, note that a transaction is the smallest functional
"molecule" of user-system interaction. Other writers may adopt
different terminology (cf. Pew and Rollins, 1975), but in this
report "transaction" refers to an input by the user followed by a
response from the computer.

The analysis of tasks into discrete transactions can be done
with detailed operational sequence diagrams, or other similar
methods. Here the designer tries to predict user actions under
different circumstances, and gain insight into the data handling
transactions required for successful task performance. Each

-17-

az

UJJ

WLU-

zL LU

a~ ~ -j loC

aU 0.z j

02 1

to

p-LU ku ~ 4)

z w LU L.0
CA cc~ I- LL'

ZLU CL U 1.
;j ciLU zJELU

LU > LU H
00= U. U

LU)

CLU wII n
caIip.

U)OLU I tCA

ca)

- aH

I-- -U

C3 CC LA LU

U,=

a t i c .

-18-

transaction will imply the need for certain functional capabilities
at the user intperface, i.e., specific features to be provided in USI
design.

How many different kinds of user data handling tasks are there?
At the most detailed level of analysis, every task is potentially
different from an infinite number of others. Considered more
generally, however, tasks of a particular type may seem so similar
as to justify describing them as variations of a single
characteristic task ("generic task", "archetype", etc.). It seems
probable that if such characteristic tasks could be identified, some
finite number - - perhaps 50 or 100 - - would provide a fair
representation of the kinds of tasks users actually perform in
information systems. If the functional capabilities required by
each of these characteristic tasks were defined and catalogued, that
would contribute significantly to good USI design.

Potential confusion in the terminology of task analysis
sometimes results from failure to distinguish between functional
data handling tasks and user jobs. What about jobs, where do they
fit in?

To define a job, tasks must be allocated to determine a set of
responsibilities and activities for each system user. Task
allocation may not prove easy. It will seldom be desirable to
allocate this task to a person and that task to a machine, as
textbooks suggest. Instead, more effective performance may result
when the computer and its users participate jointly in task
performance (Ramsey and Atwood, 1979).

If this is the case, then job definition involves specification
of user participation in tasks. From this viewpoint, one possible

contribution of USI guidelines would be to suggest the most
effective ways in which people can participate in various identified
data handling tasks, as well as to specify the functional USI
capabilities needed to facilitate such participation.

It should be noted that jobs, as defined here, are generally
not the same as system data processing functions. Jobs can be both
smaller and larger than functions. A surveillance function, for
example, might involve a monitoring task performed by several
different operators, perhaps each responsible for a different
surveillance sector. And each of those operators, as part of his
job, might also participate in other tasks related to different
functions.

Thus job definition, the combining of tasks performed by
* people, involves something more than functional analysis, an extra

-19-

application of judgment in the design process. The purpose of job
definition is twofold. On the one hand, the definition of jobs
determines what capabilities will be required of system users. On
the other, the definition of jobs indicates what tasks may have to
be performed in combination, by a particular person at a particular
work station, and so implies what combination of functional
capabilities will be required of the USI.

FUNCTIONAL CAPABILITIES CHECKLIST

Task analysis will not lead directly to USI design. As
indicated in Figure 2, an intervening step is needed, where the
results of task analysis are defined in terms of required USI
functional capabilities. What tools can be provided to aid in USI
requirements definition? That is the question discussed next.

If a user must interact with a graphic display, as in a
computer-aided design task, he will need a functional capability for
pointing at different parts of the display. Without a pointer to
designate displayed objects and positions, task transactions would
be difficult or even impossible to accomplish. Various physical
means might be chosen to provide a pointer -- a lightpen, perhaps,
or joystick, or trackball, or whatever. But it is the functional
capability for pointing that is required.

For an on-line editing task, where the user must designate
arbitrary portions of displayed text for correction, a pointer would
certainly seein useful if not essential. For a task involving
sequential selections among computer-displayed options, a pointer

would probably be useful, although other design alternatives such as
multifunction keys might do as well. For many other tasks a pointer
might not be needed at all.

Two ideas are illustrated here. First, it may be possible to
define the functional capabilities required by a task without
immediate regard for their implementation in USI design. Second,
different tasks will require different capabilities.

There are many functional capabilities, in addition to the
"pointing" example above, that must be considered in USI design. An
initial attempt at listing USI functional capabilities included over
200 items (Smith, 1980a). A more recent listing was revised and
enlarged to include 473 items (Smith, 1981a).

The current list of USI functional capabilities is presented in
Appendix A to this report. This list will continue to grow as more
system applications are analyzed, each emphasizing particular USI

-20-

requirements with consequent elaboration of that portion of the
list. Eventually the list should reach a stable size of perhaps
1000 entries.

This list has been hierarchically structured into six major
functional areas -- data entry, data display, sequence control, user
guidance, data transfer and data protection. Within each functional
area, more specifically identified functions are listed. Under data
entry, for example, the specific functions include position
designation, direction designation, text entry, data forms, etc.

Each of these specific functions is further divided into
subordinate topics of increasing specificity, ranging to seven
levels deep in some portions of the list. In this list, for
example, the function of position designation, which is the
"tpointing" function mentioned earlier, is elaborated in its various
aspects, to help define just what kinds of pointing may be required
for any user task.

Insofar as possible, the checklist is structured and worded to
specify functional requirements independently of design
implementation. Some functional capabilities, such as pointing, may
imply the need for special interface hardware. Many functional
capabilities of the USl, however, have little to do with hardware
selection, and depend primarily on the logic of software
implementation.

Consider two examples. For many data entry tasks users will
need a flexible capability to back up and change previously entered
items. For a particular data entry task, a user may need the
capability to defer entry of unavailable data items, even though
they are usually required for subsequent data processing
calculations. Such capabilities can be provided only by appropriate
USI software design.

The software designs chosen to implement these two functional
capabilities - - optional backup and deferred data entry - - might
share some common features, e.g., some sort of suspense file.
Software implementations would differ in other respects, e.g., in
terms of validation checks applied during data entry and at later
stages of data processing, and the messages displayed to the user
when data deficiencies are detected. Thus the definition of USI
functional requirements may influence the design of internal
computer processing as well as the design of software directlyIIimplementing the user interface.

Given an extended list of USI functional capabilities, one
could check each item to record an estimate of whether it is

.21-

required, potentially useful, or not needed for performance of a
particular task. It is a "checklist" format that is shown in
Appendix A. Such a checklist will then define a "profile" of USI
functional requirements for the particular task being considered. -

If the checklist were completed for each of the various tasks
comp'rising a user's job, and if this were done for all jobs in a
system, then the summation of those checklists would define the
overall USI functional requirements for that information system
design.

In actual practice, the checklist might not be used in this
way, repetitively for each task. Instead, a system analyst might
simply make one aggregate list to summarize general understanding of
a user's job, particularly in early stages of system development
when detailed task analyses have not been completed. Practical use
of the checklist is discussed further in the remainder of this
section.

USE OF THE CHECKLIST

How useful will the checklist be in system development? At
this stage it is too soon to tell. Certainly something seems
needed. In the survey cited earlier (Smith, 1981b), most
respondents, 78 percent, believe that the proposed USI functional
capabilities checklist could prove helpful in requirements
definition.

If nothing else, the checklist can help ensure comprehensive
review of USI functions by system developers. In this regard, one
could imagine that similar checklists dealing with other major
system functions -- sensors, communication, computer security, etc.

-might also prove helpful in system requirements definition.

Another value of the checklist can be to help system users
participate in the early definition of required functional
capabilities. Users are often asked what features they want
included in a new system, but seldom know in what terms they should
reply. The checklist could clarify the expression of user judgment

in generating and reviewing system specifications.

To assess checklist use, it will be necessary to attempt its
application in a variety of system development programs. The result
should be revision and enlargement of the checklist to provide more
complete coverage, plus increased understanding of how and when the
checklist can best be used.

-22-

Looking ahead, two improvements in checklist application seem
likely. First, as experience is gained in use of the checklist, it
should be possible to accumulate checklists as they are prepared for
various characteristic user tasks, so that they become an available
reference in the development of new systems. This accumulation of
past wisdom can provide a structured embodiment of "corporate
memory" in a form potentially valuable to system developers. Then
each new USI design will not have to start from scratch.

Second, it should be possible to implement the checklist as an
on-line computer aid. That would offer several advantages. The
short, somewhat cryptic labels in the checklist could be
supplemented by optional display of explanations and examples.
Checking a particular capability as not needed could result in
automatic omission of all related sub-categories, thus by-passing
portions of the (lengthy) checklist. Once required functional
capabilities had been checked, it might prove feasible to translate
those checks automatically into a verbal description of USI
requirements, which could constitute a first draft for that portion
of the written system specification. Experiments toward that end
are currently under way at MITRE, as discussed in Section 5 of this
report.

How is the checklist related to USI design guidelines? An
important use of requirements definition will be to limit the choice
of design guidelines to be employed during system development. As
discussed later in this report, a total catalog of design guidelines
might grow quite large, including hundreds of entries. But many of
these guidelines will be specifically related to particular
functional capabilities. Thus when the subset of capabilities
required by a new system has been determined, then a related subset
of guidelines could be selected, tailored to system requirements.

If the functional capabilities checklist were automated, as
envisioned above, then it should be possible to provide computer
aids to facilitate this tailoring process. If both the checklist
and the design guidelines were represented in computer storage, with
appropriate cross indexing, then specification of desired functional
capabilities could be programmed to produce automatic printout of
the corresponding set of guidelines for USI design.

-23-

SECTION 4

USI DESIGN GUIDELINES

Once USI functional requirements have been defined, the next
step is to provide design guidance for the USI software needed to
implement those requirements. Current guidelines are scattered in
various publications, and in aggregate do not provide comprehensive
guidance for USI design. Some general principles can be offered to
aid design in major USI functional areas such as data entry, data
display, or sequence control. But it will be necessary to develop a
coherent structure of detailed guidelines related to specific USI
functions before a comprehensive design standard can be established.

CURRENT STATUS

Until recently, there has been no thorough-going attempt to
integrate the scattered papers, articles and technical reports that
constitute the literature of user-computer interaction. A first
step was made, under sponsorship of the Office of Naval Research, in
compilation of an extensive bibliography on this subject (Ramsey,
Atwood and Kirshbaum, 1978). A significant follow-on effort
culminated in publication by Ramsey and Atwood (1979) of a
comprehensive summary of this literature. In that compendium the
authors characterize the current unsatisfactory situation with
regard to USI design guidance:

In some well established research areas, such as keyboard
design and certain physical properties of displays,
guidelines exist which are reasonably good and fairly
detailed. Such guidelines may be quite helpful in the
design of a console or other interface device for a
system, or even in the selection of an appropriate
off-the-shelf input/output device. As we progress toward
the more central issues in interactive systems, such as
their basic informational properties, user aids, and
dialogue methods, available guidelines become sketchy and
eventually nonexistent. The interactive system designer
is given little human factors guidance with respect to the
most basic design dec'isions. In fact, the areas in which
existing guidelines concentrate are often not even under
the control of the designer, who may have more freedom
with respect to dialogue and problem-solving aids than
with respect to terminal design or selection.

CRamsey and Atwood, 1979, page 2)

-24-

.. WV

Most published reports dealing with the user-computer interface
describe applications rather than design principles. The
bibliography of literature on human factors in computer systems,
cited above, includes 564 items, but identifies only 17 as offering
design guidelines (Ramsey, et al., 1978). A popular book on the
design of user-computer dialogues offers stimulating examples,
covering a range of on-line applications, but is disappointing in
its failure to emphasize design principles (Martin, 1973).

Although accepted standards for USI design are not now
available, some first steps toward guidelines development have been
taken. In the past decade, as increasing experience has been gained
in the use of on-line computer systems, a number of experts have
attempted to set forth principles ("guidelines", "ground rules"
"srules of thumb") for design of the user-computer interface. None
of these sets of guidelines is sufficiently comprehensive to
constitute a USI design standard, but they do offer a foundation on
which to build.

Looking at the available literature, some published guidelines
are proposed in very general terms: "know the user" (Hansen, 1971).
Some emphasize special aspects of interface design: response time
(Miller, 1968); error protection (Wasserman, 1973); command
languages (Kennedy, 1974); multifunction switches (Calhoun, 1978);
lightpen selection (Uber, Williams and Hisey, 1968); graphic
interaction (Foley and Wallace, 1974); display formatting (Stewart,
1976; Green, 1976); color coding (Krebs, 1978).

Some guidelines have been proposed for specific operator tasks,
such as document retrieval (Thompson, 1971), or process control
(Williams, 1977). Some have been oriented toward the general use of
on-line systems, with little task specificity (Nickerson and Pew,
1971; Palme, 1975; Chariton, 1976; Dzida, Herda. and Itzfeldt, 1978).
Some guidelines are based on explicit assumptions of system
architecture and equipment capability (Pew and Rollins, 1975; see
also Pew, Rollins and Williams, 1976). Some guidelines assume
implicit constraints, such as printed outputs rather than electronic
displays (Chamberlain, 1975).

Only a few sets of guidelines have been expressed at the level
of detail needed by designers. Perhaps the most detailed USI
guidelines are those proposed by Engel and Granda (1975). Here is a
sample: "If a fixed length word or collection of characters is to
be entered via the keyboard, limit the field on the screen by
special characters, for example, underscores." More specific
guidelines of this sort are needed.

-25-

In aggregate, the evidence of concern for USI design principles
is encouraging, but there is still much to be learned. The current
Army effort to develop USI design guidelines, cited earlier, could
contribute significant further knowledge of this subject, if its
results can be generalized beyond the restrictions on user
population and data handling tasks adopted for that study (ARI,
1979).

Military agencies, of course, are not the only organizations
concerned with USI design. There is increasing interest in this
topic within industrial and commercial organizations, and throughout
the general community of people who develop and use information
systems. At one recent meeting, over 200 people attended a session
of papers on USI design (Ramsey and Atwood, 1980; Granda, 1980;
Smith, 1980b; Sidorsky and Parrish, 1980; Pew, Sidner and Vittal,
1980). A questionnaire follow-up to people expressing interest in
USI design has resulted in approximately 80 responses and the
formation of an informal USI guidelines group (USIGG) of people
wishing to exchange information on this topic (Smith, 1981b).

David Penniman, writing for the User On-Line Interaction Group
of the American Society for Information Sciences, cites the need for
"an interim set of guidelines for user interface design based on
available literature and pending the development of better
guidelines as our knowledge increases" (1979, page 2). Penniman
goes on to remind us that interim guidelines are better than no
guidelines at all.

Respondents to the USIGG survey support Penniman's activist
position. Given a choice between trying to develop a complete set
of USI guidelines now, when many of them must be based on judgment
rather than experimental data, or else accepting only a partial set
of guidelines based on evaluated research, most respondents, 73
percent, would go with judgment now. Only 14 percent prefer to wait
for data later.

It is clear, of course, that system developers cannot wait for
future research data in making present design decisions. To meet
current needs, a number of in-house handbooks have recently been
published to guide USI design within particular organizations (NASA,
1979; Galitz, 1980; Brown, Burkleo, Mangelsdorf, Olsen and Williams,
1980). These in-house guidelines draw heavily from earlier
publications, especially the IBM report by Engel and Granda (1975),
usually modified by the authors' own good judgment. They will help
system developers until such time as a comprehensive USI design
standard becomes available.

-26-

To assess the value of USI design guidelines, particularly
those based on judgment, it will be necessary to try them out in
actual system development programs. That process of guidelines
evaluation will have to extend over a period of some years.
Meanwhile, whatever guidelines are proposed at this stage can only
be regarded as tentative, to be used on an interim basis until
experience is gained in their trial application.

An extended guidelines development and evaluation effort may

well be justified, however, in view of the potential long-term
benefits. There is one important factor to consider in this regard,
which is the relative stability of human engineering guidelines.
Design standards for hardware interfaces may change as each new
generation of equipment becomes available. But people change
relatively little from one generation to the next, in terms of their
basic information processing capabilities and limitations.

This relative invariance of people with respect to technology
poses both problems and advantages. The most significant advantage
is this: if USI guidelines can be expressed in terms of basic human
capabilities rather than transient technology, a design standard of
enduring value will be established. It may be true that such
guidelines can be established only slowly, but that is all the more
reason to make a start now.

GUIDELINES COMPILATION

As a first step toward developing needed guidance, currently
available guidelines must be compiled and organized into some
coherent structure. The organizational structure recommended here
is one related to USI functional capabilities, as categorized in the
requirements checklist discussed previously. Such a functional
organization for USI design guidelines is illustrated in appendices
to this report.

In Appendix B, 98 guidelines have been compiled for the various
functions and subfunctions of data entry. In Appendix C, 134
guidelines are presented for data display functions. In Appendix D,
143 guidelines are presented for sequence control functions.

How many guidelines might there be altogether? It seems
probable that a comprehensive listing of guidelines for all
functional areas of USI design might run to over 1000 items, if
guidelines are stated at the level of detail illustrated here. That
would constitute a formidable compendium. It might be well, then,
to consider just what level of detail is needed.

-27-

Each appendix begins with several pages of general discussion
of design principles. General principles, however, can only guide
the designer a little way. Exhortations to provide flexibility, to
preserve context, to ensure compatibility between input and output,
are not enough. More specific guidance is needed, and the
guidelines that follow the introductory discussion are couched in
much more specific terms.

No matter how specifically guidelines are stated, however, they
will still be subject to misinterpretation. Various detailed
features of wording and format will affect the understanding and use
of design guidelines (Rogers and Pegden, 1977). For that reason,
therefore, the organization adopted in this report for presentation
of guidelines deserves some further description.

Each guideline is stated as a single sentence. In some
instances a stated guideline is amplified by one or more examples.
Where validity of a guideline is contingent upon special factors,
exceptions may be noted. Where further clarification seems needed,
further comments may be added. Where a guideline is derived from a
particular source, a reference note is added. Finally, where
guidelines are specifically related to one another, direction to
those other guidelines is given.

One consequence of this notation is that a guideline that began
as a simple statement can end up filling half a page. Looking
ahead, as future knowledge increases, it may prove desirable to
annotate guidelines still further. It should be possible, for
example, to estimate the relative importance of different
guidelines, so that the USI designer can assess the potential risk
of ignoring them, or the potential value of compliance.

As the aggregate bulk of material increases, efficient
organization of guidelines will be critical. The organization
illustrated here is a simple listing in which guidelines are
numbered to correspond to the numbered hierarchy of the functional
capabilities checklist. This organization of guidelines based on a
functional structure offers a significant advantage in the
development of guidelines: it shows where guidelines are missing,
and so where further guidelines are needed.

For USI designers, the organization of guidelines in terms of
functional capabilities will prove particularly useful. As a
designer considers each specified function, pertinent guidelines can
be readily referenced. Conversely, the designer can quickly
determine where guidance is not available, or is not relevant to
functional requirements.

-28-

FUTURE DEVELOPMENT

Current efforts at MITRE are directed toward continuing to
revise and expand the compilation of USI design guidelines presented
here. Next year should see completion of initial draft guidelines
for all six functional areas of USI design, adding guidelines for
user guidance, communication and security functions.

With a comprehensive compilation of available guidelines, a
good start will have been made toward the establishment of USI
design standards, but much more must still be accomplished.
Compiled guidelines must be reviewed, revised, expanded, applied and
evaluated before they become accepted and codified as design
standards. Some of the possible steps needed for future development
of USI design guidelines are illustrated in Figure 3.

Informal review of compiled guidelines is being solicited
through USIGG and other professional groups, in the expectation that
guidelines can be improved through additions and changes. Trial
application of USI design guidelines is being explored in several
Air Force system acquisition programs. Evaluation of proposed
guidelines, by system developers, designers and users, still lies in
the future.

Once a comprehensive set of guidelines has been prepared, the
appropriate form for initial codification will probably be as a
design handbook. Such a handbook could be referenced for optional
design guidance in system development, or perhaps adopted by some
organizations as an agreed standard for in-house system design.
With increased experience in its use, a USI design handbook might
become formally accepted as a more general design standard, to be
referenced during system development for contractual purposes. As a
formal standard, guidelines can be referenced for design evaluation
as well as for design guidance.

The potential value of design standards is generally recognized
in system engineering, particularly with respect to interface design
where communication standards are needed to ensure the effective
linking of systems, and of system components. USI design standards
may prove equally important for the effective linking of a system
with its users.

Problems will undoubtedly arise in the application of USI
design guidelines. The sheer size of a design handbook, or a
documented design standard, may make it difficult for designers to
assimilate guidelines, at least on first reading.

-29-

ow.

a .__ _ _ _..)

--- 0

There will also be questions of interpretation, no matter how
carefully guidelines &re worded. Consider some examples taken from
the guidelines for position designation in Appendix B. How can a
designer be certain that a cursor is "visually distinctive"
(guideline 1.1-2)? What kind of "feedback" should be given a user,
and just how fast is "immediate" (1.1-5)? How will a designer
without extensive further information know whether controls are
"1compatible in operation" (1.1-17)?

An accepted standard, then, will not in itself guarantee good
design. This is true in the case of human engineering standards for
hardware design (Rogers and Armstrong, 1977), and will presumably
prove true for future design standards pertaining to USI software.
That is no reason to abandon standards. It simply means that
something more may be needed.

Two ideas deserve consideration here. First, guidelines and
standards will only prove effective if they are applied as part of a
broader design methodology. This point has been made by Ramsey and
Atwood (1979; 1980). Effective application of USI design guidelines
will be dependent upon requirements definition, of the sort
recommended in the preceding section of this report. Effective use
of guidelines will also depend upon documentation of USI design for

review and coordination, as discussed in the next section.

A second idea for ensuring effective use of standards in USI
design is more speculative. Once design standards have been

* established, it may be possible to implement those standards in
modular software building blocks that can be used to provide a
common, standardized USI design for different systems (Clapp and
Hazle, 1978). A practical trial of this approach, for a limited
range of data handling applications at IBM, indicates that this is a
potential means of achieving significant productivity increases in
USI software design (Lee and Santarelli, 1979).

Modular USI software would help ensure uniform implementation
of design standards. In effect, once a really good interface has
been designed for one system, it may be possible to use it for other
systems also. If that is possible, it seems pointless to re-invent
a good USI design over and over again.

Future development of modular USI software can bring
standardization of functional capabilities, as defined in the
checklist, along with standard design implementation. Such a
development effort may take a long time to achieve its goal. But
with the promise of substantial benefits for system operation as
well as for system development, that goal is worth working toward.

-31-

SZCTION 5

USI DOCUMENTATION

Having defined required USI functional capabilities, and having
selected appropriate design guidelines, a third stepleading to good
USI design is careful design documentation. Current USI
documentation in system development is seldom adequate. More
complete documentation is needed, to permit review of a proposed USI
design before its software implementation, and continuing design
coordination thereafter.

CURRENT STATUS

In system development it is customary to require documentation
in advance of design, at least for critical design elements. In
systems where the USI design is considered critical, which probably
includes most information systems, documentation should describe
interface software design as well as hardware, including for each
on-line transaction the expected user inputs, required data
processing, format of displayed outputs, and the associated sequence
control logic.

Several questions in the USIGG survey (Smith, 1981b) dealt with
USI documentation during system development. Respondents provided
estimates of documentation coverage in initial specifications for 20
systems. For five of those systems, there was no documentation of
the USI. But that includes two systems for which no specifications
at all were written, i.e., where the USI was not slighted in
comparison with other aspects of system design.

Some respondents reported modest coverage of the USI, with
several pages of system specifications devoted to USI functional
requirements, hardware and software design. The median estimate of
all respondents was 3-5 pages devoted to each of those three topics.

The most extensive documentation reported was for a graphical
display system for process control in a nuclear plant, where it is

estmatd tat1500 pages of the system specification were devoted
to USI functional requirements and another 2000 pages to USI

conideatinsin software design, which the respondent considers
adequate for that system. This particular respondent, however, does

cite a need for broader system design standardization within the

-32-

Only six other respondents judged USI documentation adequate to
support effective system development. The remainder, 67 percent of
those dealing with this question, consider USI documentation
inadequate.

Some allowance must be made for the professional bias of these
respondents. Most are involved in human factors engineering,
concerned with the problems of designing complex systems for
efficient use, and keenly aware of any deficiencies in system
development which may lead to non-optimal design. From this point
of view, it is not surprising that many are critical of current
practices in USI design, including design documentation.
Nevertheless, it does seem clear that there are serious deficiencies
in USI documentation in many system development programs.

SPECIFICATION GENERATION

An important step in the early conceptual stages of system
development is documenting specifications of required functional
capabilities. System specifications, if comprehensive, will
represent an amalgam of judgment from general system analysts and
from specialists in the various functional areas involved in system
design -- sensors, communication, data processing, etc. A diverse
range of knowledge and experience must be brought to bear in the
specification and documentation of system requirements.

In any system engineering group there will be individuals
expert in some functional areas but not in others. Ideally, each
person in the group can draw upon experience to write a particular
portion of the system specification, and the group as a whole can
provide the necessary comprehensive coverage.

If there is in the group no expert for a particular functional
area, additional help may be needed. One solution is to find an
outside expert, who must then learn enough about the proposed system
to contribute effectively to its specification.

If an outside expert is not available, an alternative solution
might be to use computer aids to help guide the writing of system
specifications in any particular functional area. Such computer
aids are not presently available, but it seems possible that they

could be created.

Such aids could take various forms. At the simplest level, one
could store standard paragraphs for relatively fixed material,
sometimes called "boiler plate". At a more complicated level, one
could store outlines and templates, which the writer of

-33-

specifications could refer to, "fill in the blanks", and amplify
with additional material specific to a particular system.

At a still more complicated level, one might program a computer
to help guide the specification of functional requirements, and to
generate draft written material automatically tailored to those
requirements. It is this level of specification generation that
will be discussed here.

A number of conceptual and procedural problems must be solved
in order to develop such a computer aid. The system analyst must
have some means of defining system requirements for input to a
specification-writing computer. The computer must have a means of
generating appropriate written outputs.

The USI checklist presented in Appendix A was designed as a
manual aid for requirements definition, to remind a specification
writer of topics that should be covered, and to help organize the
written specification of USI functional requirements. In recent
months, however, the USI checklist, or at least its initial portion
dealing with data entry functions, has been re-created as an on-line
computer tool.

This automated version of the checklist permits a system
analyst to indicate which capabilities are required, or probably
useful though not actually required, or not needed. The computer
can then look up stored words corresponding to each requirements
indicator, and generate a draft specification.

The problem to be solved is how to program a computer to
generate an appropriate written output corresponding to any
particular pattern of defined functional requirements. In effect,
words must be stored in the computer for each item in the checklist,
and means devised to link those words together, in any possible
combination, to produce a coherent output.

A solution to that problem has been called "patterned prose"
(Smith, 1982). In essence, patterned prose consists of a
hierarchically related set of sentences, phrases and words, and
their logical connectors, organized (and numbered) to correspond to
the structure of the checklist which is used to call them out. The
words themselves represent a fairly straightforward expansion of the
item labels in the checklist. In addition, patterned prose includes
various logic elements that serve to connect the words.

A sample of the written output produced by the patterned prose
technique is provided in Figure 4. In that sample, it is assumed
that every listed capability for data entry has been marked as

-34-

*.1.l Position Designation. A capability for the user
to designate positions on a display by cursor placement,
and to enter designated positions for computer
processing, shall be provided. The user shall be able to
place the cursor in arbitrary positions anywhere on a
display, by continuous positioning, or at discrete
intervals, at least TBD horizontally and TBD vertically.
The user shall be able to place the cursor in predefined
positions, i.e., at specified display locations,
including a HOME position to which the cursor can be
returned by a single action from any other point, at the
upper left, center, or lower right of the display; a
command entry area, where user inputs will be composed;
and at the end of a displayed file, where additionil user
entries will be frequently made. The user shall be able
to displace the cursor to positions incremented from a
current position by specified intervals, including
character spacing right, left, up, and down; spacing by
other fixed interval, i.e., tabbing right, left, up, and
down; and spacing by format features, including word,
line, and paragraph.

*.1.2 Direction Designation. A capability for the user

to designate direction, e.g., azimuth, bearing, heading,
shall be provided. This shall include a capability for
vector rotation on a display; sequential pointing to
displayed positions; and numeric entry of directional
data.

Note that the asterisk in these paragraph numbers can

be replaced by whatever number(s) the specification
writer wishes to designate, so that the draft material
will appear properly numbered in the overall
specificdtion.

Figure 4. Sample Output of Patterned Prose

-35-

- --

required, except for those items labeled "other"1 . The resulting
prose does seem to read smoothly, even if it lacks literary merit.
Certainly such written output might be considered acceptable as the
first draft for a specification.

The automated checklist, generating written specifications
derived from patterned prosc, is currently available for
demonstration at MITRE. Written output can also be displayed
on-line for system analysts who may wish to review the results for
any defined set of functional requirements before printing a draft
specification. This computer tool will soon be offered for
evaluation in practical use in MITRE' s system acquisition programs.

Looking further ahead, if this approach to specification
generation should prove useful in its practical application, then it
would probably work for other functional areas as well as for USI
functions. That is to say, it may be possible to define
requirements and generate written outputs in a similar way for other
portions of a system specification.

If that proves true, this technique may represent something
rather more than a specification writing machine. It may offer a
way to package expertise, to record past experience ("1corporate
memory") so that it can be applied more effectively in future work.
One can imagine expert committees engaged in periodic review to
update the structure and wording of computer-stored material in each
functional area. And one can imagine that system analysts would no
longer need to re-invent the process of specification writing for
each system, but instead could rely on past work to help begin new
ventures.

DESIGN DOCUMENTATION

Following documentation of system specifications must come
documentation of system design. What would constitute adequate
documentation of USI design? First, there should be an explicit
statement of USI requirements, perhaps using the functional
capabilities checklist proposed here, in order to aid mutual
understanding among system developers, designers and users. Second,
If design guidelines are followed, those should be included or
referenced in USI documentation. Third, some effective means is
needed to document the design itself, as it evolves during the
course of system development.

Documentation of USI design must deal with both content and
format. One possible approach is that proposed by Pew and Rollins

* 1 (1975) to document display formats, data inputs, user actions and

-36-

their consequences. Pew and Rollins recommend five components for
design documentation. With some changes of terminology, these five
components can be summarized as follows.

1. Task Flow Chart. This breaks down a generally stated user task

into a logical series of decisions to be made and information
handling activities to be performed. Some of these activities
will involve interaction with a computer subsystem, and some
may not. Task analysis at this level may be provided in a
system functional specification, but more often must be
developed in the first stage of system design.

2. Transaction Flow Chart. This breaks down those activities
involving computer use into a series of discrete transactions.
The planned user-system dialogue is outlined step by step, or
as is often said for dialogues involving visual displays, frame
by frame. The transaction flow chart indicates choices the
user can make in sequence control, contingent branching as a
result of user input, data entries required, outputs generated,
etc.

3. Display (Frame) Format. Working from the transaction flow
chart, each step or display frame must be specified in detail.
For displays, the most effective way to do this is to design a
facsimile showing the exact wording, spacing, etc., that will
be used. Here is where USI guidelines could be particularly
helpful to the designer.

4. Input Data Definition. For transactions involving data entry,
it will be necessary to define each item to be input. This
definition will involve specifying the range of acceptable
values for each entry where data validation is required, the
consequences of data entry in terms of required computer
processing, and the implications (if any) for subsequent
sequence control and for user guidance.

5. User Guidance. For each transaction the designer should
specify the feedback that will result from any possible user
action, e.g., alarm or alert signals, guidance messages, other
display changes. Often this aspect of USI design is conceived
narrowly, to include only the specification of error messages.
It will help USI design, however, if the designer can adopt a
broader perspective. There are many possible aspects of user
guidance that cannot fairly be termed error messages. Perhaps
the user should be given a message requesting confirmation of a
doubtful entry, i.e., an entry that is so unlikely that it is
probably though not certainly an error. Perhaps the user
should be requested to enter additional data to amplify an

* entry just made. Or perhaps the user should simply be given a
message suggesting the next step in a transaction sequence.

* 1 -37-

If all of these five components were included in USI
documentation, which is not often the case, then collectively they

would seem to provide an adequate basis for design review and
coordination. A more recent report, however, suggests that
something more may be needed for USI documentation, namely, the
development of a "knowledge representation language" that can be
used to provide procedural description both in terms of the user's
view of the system and the designer's specifications CPew, et al.,
1980). It remains to be demonstrated how such an approach will work
in practice.

DESIGN REVIEW

Periodic design review is needed to ensure successful system
development. Early review allows critique of inadequate design
features before actual implementation, at a stage when suggestions
for improvement of USI design do not entail the costs and delays of
software modification. To permit effective review, documentation
must clearly explain the proposed USI design to both system
developers and intended users.

In some system development efforts, the designers may be
encouraged to propose specific USI design guidelines not included in
the system specification. Guidelines proposed by the designer
should be included in USI design documentation, so that design
review can determine whether USI functional requirements will be
met.

In a development program involving modifications to improve an
existing system, rather than development of a completely new system,
the designers may be asked to define USI guidelines consonant with
current procedures, which represent de facto design standards. With
increased emphasis on incremental procurement, the modification and
expansion of existing capabilities may become a typical mode of
future system development programs.

One aspect of USI design review deserves particular attention.
For many systems the USI represents such a significant and pervasive
element of the total effort that review of USI design can be a large
first step in reviewing overall system design. Where users will be
intimately involved in the performance of critical system functions,
then a detailed review of proposed user functions will go a long way
toward understanding overall system functions. Thus a document
describing USI design, with some amplification to include internal
data processing and interfaces plus relevant external constraints,
could become a description of the larger information system in which
the users will work.

-38-

Such reference to USI design in order to clarify understanding
of more general system operation can be observed in practice. In
system development programs USI design documents are sometimes
generated informally, outside of contractual requirements, as a
spontaneous aid to overall design review and coordination.

Pew and Rollins (1975) recommend that once USI design has been
documented it should be subject to configuration management control.
That is to say, during software implementation, changes to a
documented USI design should be made only after review and
authorization, just like other system interfaces. Such control will
help ensure design consistency, so that different people can
implement different parts of the USI with reasonable confidence that
the parts will fit together as a coherent whole. That seems a good
idea.

DESIGN COORDINATION

USI documentation can serve a variety of purposes in design
coordination. During initial software implementation, a USI "design
handbook" could provide a single reference to help coordinate the
contributions of different people in hardware and software
engineering groups. Such a handbook could also provide the basis
for configuration management of USI design, as subsequent changes
are proposed to the initial design implementation.

For the purpose of coordination, USI design documentation
should include a summary of the guidelines actually used, i.e., as
adapted from initial design proposals to take into account
subsequently imposed software tradeoffs, hardware constraints, etc.
In effect, the USI designer should document his work as if he were
telling someone else how to do it.

Such explicit documentation of system-specific USI guidelines
is presently rare, but is nonetheless needed. A recent example'is
provided in a NASA report of USI guidelines providing a sort of
design handbook for Spacelab experiments:

The purpose of this document is to present CRT display
design and command usage guidelines applicable to
experiments utilizing the Experiment Computer Application

Software (ECAS) for use by Spacelab scientific
investigators and experiment designers. It is expected
that most Spazelab experiments will have need of such
displays.

-39-

The guidelines, while not given as strict requirements,
explain recommended methods and techniques for presenting
data from the ECAS program via the DDS [data display
system] to the payload crew. The user is encouraged to
apply and follow them, although other considerations
(memory conservation, etc.) may force a trade-off in
specific instances. Used as a reference, the document
will be an important aid in standardizing the
crew/experiment interface among the different payloads and
should result in lower crew training time and increased
efficiency of the payload crew in onboard experiment

* operations.
* (NASA, 1979, page 1-1)

A USI design handbook could provide timely information to
coordinate the preparation of user manuals and training materials in
parallel with design implementation, throughout the course of system
development.

USI design documentation could also continue to provide helpful
guidance after system implementation, for users who may wish to add
or modify inputs, displays, sequence control logic, etc., in order
to meet changing operational requirements. That may become more
common in the future, as existing information systems are upgraded
rather than new systems built. In such situations, it could be
important to maintain consistency in USI design between "old" and
new" portions of a system.

It may seem redundant to keep a written description of USI
design once a system is operating. Why not just look at the actual
on-line interface to see what it is like? Certainly it is true that
operational use can provide valuable insight into the advantages and
drawbacks of any particular USI design; and it is operational
performance that provides final design verification. But
operational use is a slow and inefficient way to review some design
features, for example, to discover system response to inputs seldom
made and transaction sequence paths seldom taken.

Moreover, the principles underlying USI design, the functional
requirements and the chosen guidelines for meeting them, will not
all be evident in operational use. It may well be easier for future
developers and users if those principles can be set down "explicitly
for each system, as well is more generally for all systems. Which
brings this report full circle in its recommendations: system
developers and prospective users should define and document
functional USI requirements and guidelines for the designer; and USI
designers should document for the system developers and users just
what has been done.

-40-

Improvements in USI requirements definition, design guidance
and design documentation can come only as the result of a continuing
collaborative effort by people working on these problems. No one
person has a monopoly on wisdom in this area. If an effective joint
effort can be sustained through the next decade, significant
advances in the art and methodology of USI design will be achieved.
You can join in that effort.

-41-

REFERENCES

ARI (Army Research Institute for Behavioral and Social Sciences).
Development of Design Guidelines and Criteria for User/Operator
Transactions with Battlefield Automated Systems, RFP No.
MDA903-79-R-0218, 1979.

Brown, C. M., Burkleo, H. V., Mangelsdorf, J. E., Olsen, R. A.,0and
Williams, A. R., Jr. Human Factors Engineering Criteria for
Information Processing Systems. Sunnyvale, California: Lockheed
Missiles and Space Company, 10 October 1980.

4
Calhoun, G. L. Control logic design criteria for multifunction

switching devices. In Proceedings of the 22nd Annual Meeting.
Santa Monica, California: Human Factors Society, 1978, 383-387.

Chamberlain, R. G. Conventions for interactive computer programs.
Interfaces,'November 1975, 6(1), 77-82.

Chariton, D. R. Man-machine interface design for timesharing
systems. In Proceedings of the Annual Conference. New York:
Association for Computing Machinery, 1976, 362-366.

Clapp, J. A. and Hazle, M. Building Blocks for C3 Systems, Report
ESD-TR-77-360. Bedford, Massachusetts: USAF Electronic Systems
Division, March 1978. (NTIS No. AD A052 568)

Dzida, W., Herda, S. and Itzfeldt, W. D. User-perceived quality of
interactive systems. In Proceedings of the 3rd International
Conference on Software Engineering, IEEE Catalog No. 78CH1317-7C,
1978, 188-195.

Engel, S. E. and Granda, R. E. Guidelines for Man/Display
Interfaces, Technical Report TR 00.2720. Poughkeepsie, New York:
IBM, December 1975.

Foley, J. D. and Wallace, V. L. The art of natural graphic
man-machine conversation. In Proceedings of the IEEE, April
1974, 62(4), 462-471.

Gal.tz, W. 0. Human Factors in Office Automation. Atlanta,
Georgia: Life Office Management Association, Inc., 1980.

Goodwin, N. C. Man-machine interface characteristics. Published as
an Appendix in J. A. Clapp and M. Hazle, Building Blocks for C3
Systems, Report ESD-TR-77-360. Bedford, Massachusetts: USAF
Electronic Systems Division, March 1978. (NTIS No. AD A052 568)

I -42-

Granda, R. E. Man/machine design guidelines for the use of screen
display terminals. In Proceedings of the 24th Annual Meeting.
Santa Monica, California: Human Factors Society, 1980, 90-92.

Green, E. E. Message design -- graphic display strategies for
instruction. In Proceedings of the Annual Conference, New York:
Association for Computing Machinery, 1976, 144-148.

Hansen, W. J. User engineering principles for interactive systems.

In AFIPS Conference Proceedings, 1971, 39, 523-532.

Kennedy, T. C. S. The design of interactive procedures for

man-machine communication. International Journal of Man-Machine
Studies, 1974, 6, 309-334.

Krebs, M. J. Design principles for the use of color in displays.
In SID International Symposium Digest of Papers. Los Angeles:
Society for Information Display, 1978, 28-29.

Lee, W. J. and Santarelli, F. 0. Sequoyah -- A total application
development and delivery system. In Proceedings of the
Application Development Symposium (Monterey, October 1979).
Chicago: SHARE, Inc. and Guide International Corporation, 1979,
9-15.

Martin, J. Design of Man-Computer Dialogues. Englewood Cliffs, New
Jersey: Prentice-Hall, 1973.

MIL-H-48655B. Military Specification: Human Engineering
Requirements for Military Systems, Equipment and Facilities.
Washington: Department of Defense, 31 January 1979.

MIL-STD-454F. Military Standard: Standard General Requirements for
Electronic Equipment. Washington: Department of Defense,
15 March 1978.

MIL-STD-483. Military Standard: Configuration Management Practices
for Systems, Equipment, Munitions, and Computer Programs.
Washington: Department of Defense, 31 December 1970.

MIL-STD-1472B. Military Standard: Human Engineering Design
Criteria for Military Systems, Equipment and Facilities.
Washington: Department of Defense, 31 December 1974.

MIL-STD-1472C. Military Standard: Human Engineering Design
Criteria for Military Systems, Equipment and Facilities.
Washington: Department of Defense, 2 May 1981.

-43-

Miller, R. B. Response time in man-computer conversational
transactions. In AFIPS Conference Proceedings, 1968, 33,
267-277.

NASA (National Aeronautics and Space Administration). Spacelab
Experiment Computer Application Software (ECAS) Display Design
and Command Usage Guidelines, Report MSFC-PROC-711. George C.
Marshall Space Flight Center, Alabama, January 1979.

Nickerson, R. S. and Pew, R. W. Oblique steps toward the
human-factors engineering of interactive computer systems.
Published as an Appendix in M. C. Grignetti, D. C. Miller,
R. S. Nickerson and R. W. Pew, Information Processing Models and
Computer Aids for Human Performance, Report No. 2190. Cambridge,
Massachusetts: Bolt, Beranek and Newman, Inc., June 1971. (NTIS
No. AD 732 913)

Palme, J. Interactive Software for Humans, Report FOA-C10029-
M3(E5). Stockholm: Swedish National Defense Research Institute,
July 1975.

Palme, J. A human-computer interface for non-computer specialists.
Software - Practice and Experience, 1979, 9, 741-747.

Parsons, H. M. The scope of human factors in computer-based data
processing systems. Human Factors, 1970, 12(2), 165-175.

Penniman, W. D. Past chairman's message. SIG Newsletter
No. UOI-l0. Washington: American Society for Information
Science, May 1979.

Pew, R. W. and Rollins, A. M. Dialog Specification Procedures,
Report 3129 (revised). Cambridge, Massachusetts: Bolt Beranek
and Newman, 1975.

Pew, R. W., Rollins, A. M. and Williams, G. A. Generic man-computer
dialogue specification: an alternative to dialogue specialists.
In Proceedings - 6th Congress of the International Ergonomics
Association. Santa Monica, California: Human Factors Society,
1976, 251-254.

Pew, R. W., Sidner, C. L. and Vittal, J. J. Man-machine interface
design documentation: Representing the user's model of a system.
In Proceedings of the 24th Annual Meeting. Santa Monica,
California: Human Factors Society, 1980, 103-107.

-44-

Ramsey, H. R. and Atwood, M. E. Human Factors in Computer Systems:
A Review of the Literature, Technical Report SAI-79-111-DEN.
Englewood, Colorado: Science Applications, Inc., September 1979.
(NTIS No. AD A075 679)

Ramsey, H. R. and Atwood, M. E. Man-computer interface design
guidance: State of the art. In Proceedings of the 24th Annual
Meeting. Santa Monica, California: Human Factors Society, 1980,
85-89.

Ramsey, H. R., Atwood, M. E. and Kirshbaum, P. J. A Critical]y
Annotated Bibliography of the Literature of Human Factors in
Computer Systems, Technical Report SAI-78-070-DEN. Englewood,
Colorado: Science Applications, Inc., May 1978. (NTIS No. AD A058
081)

Rogers, J. G. and Armstrong, R. Use of human engineering standards
in design. Human Factors, 19(1), 15-23, 1977.

Rogers, J. G. and Pegden, C. D. Formatting and organization of a
human engineering standard. Human Factors, 19(1), 55-61, 1977.

Rouse, W. B. Design of man-computer interfaces for on-line
interactive systems. In Proceedings of the IEEE, June 1975, 63(6),
847-857.

Shneiderman, B. Software Psychology: Human Factors in Computer and
Information Systems. Cambridge, Massachusetts: Winthrop
Publishers, Inc., 1980.

Sidorsky, R. C. and Parxish, R. N. Guidelines and criteria for
human-computer interface design of battlefield automated systems.
In Proceedings of the 24th Annual Meeting. Santa Monica,
California: Human Factors Society, 1980, 98-102.

Smith, S. L. Man-computer information transfer. In Howard, J. H.
(Ed.) Electronic Information Display Systems, 284-299. Washington:
Spartan Books, 1963.

Smith, S. L. MAC Air Cargo Data Entry: 1. Preliminary analysis of
Alternative Modes, Technical Report ESD-TR-76-162, Vol 1. Bedford,
Massachusetts: USAF Electronic Systems Division, 1 July 1975.
(NTIS AD A029 013)

Smith, S. L. MAC Air Cargo Data Entry: 5. Field Testing an
On-Line Terminal at the Dover Aerial Port, Technical Report
MTR-3066-5. Bedford, Massachusetts: The MITRE Corporation, 30 June
1976.

45

Smith, S. L. Requirements definition and design guidelines for the
man-machine interface in C3 system acquisition, Technical Report
ESD-TR-80-122. Bedford, Massachusetts: USAF Electronic Systems
Division, June 1980. (a) (NTIS No. AD A087 258)

Smith, S. L. Man-machine interface requirements definition: Task
demands and functional capabilities. In Proceedings of the 24th
Annual Meeting. Santa Monica, California: Human Factors
Society, 1980, 93-97. (b)

Smith, S. L. Man-Machine Interface (MMI) Requirements Definition
and Design Guidelines: A Progress Report, Technical Report
ESD-TR-81-113. Bedford, Massachusetts: USAF Electronic Systems
Division, February 1981. (a) (NTIS No. AD A096 705)

Smith, S. L. Design guidelines for the user-system interface of
on-line computer systems: A status report. In Proceedings of
the 25th Annual Meeting. Santa Monica, California: Human
Factors Society, 1981, 509-512. (b)

Smith, S. L. Patterned prose for automatic specification
generation. Paper presented at Conference on Human Factors in
Computer Systems, Gaithersburg, Maryland, March 1982.

Stewart, T. F. M. Displays and the software interface. Applied
Ergonomics, 1976, 7(3), 137-146.

Thompson, D. A. Interface design for an interactive information
retrieval system: a literature survey and a research system
description. Journal of the American Society for Information
Science, 1971, 22, 361-373.

Uber, G. T., Williams, P. E. and Hisey, B. L. The organization and
formatting of hierarchical displays for the on-line input of
data. In AFIPS Conference Proceedings, 1968, 33, 219-226.

Wasserman, A. I. The design of 'idiot-proof' interactive programs.
In AFIPS Conference Proceedings, 1973, 42, M34-M38.

Williams, T. J. (Ed.) Guidelines for the Design of Man/Machine
Interfaces for Process Control. West Lafayette, Indiana: Purdue
University, January 1977. (NTIS No. AD A036 457)

Woodson, W. E. Human Factors Design Handbook. New York: McGraw-
Hill, 1981.

-46-

APPENDIX A

CHECKLIST OF USI FUNCTIONAL CAPABILITIES

Requirement
Estimate*

USI Capability R U N

1.0 DATA ENTRY

1.1. Position Designation
1. arbitrary positions. . .
1 continuous
2 discrete

2. predefined positions . . .
1. HOME . . .
1 upper left
2 center
3 lower right- - -

4 [other] -_____-_____-_

2 command entry area
3 end of file
4 [other]________ ____

3. incremental positions . . .
1. by character . . .
1 right
2 left
3 up
4 down

2. by interval . . .
1 right
2 left
3 up
4 down

3. by format features . . .
1 word
2 line
3 paragraph - - -

4 [other]- - - _______ ____

1.2. Direction Designation
1 vector rotation
2 sequential pointing -_ - -
3 rumeric entry
4 o t h e r]

-_
_ _ __-_

_ _ __-_

*R =Required, U =Useful, N =Not Needed

-47-

USI Capability RU N

1.3. Text
1. format...
1. predefined ...

1 header
2 paragraph---
3 page---
4 [other) ________

2. user-defined
2. enter . . .

1 insert
2 append---

3 change---
4. delete...
1 character
2 word
3 line
4 sentence
5 paragraph - - -

6 page---
5 [other] - - - _ _______

1.4. Data Forms
1. format.
1. predefined ...

1 selection automatic
2 selection by request - - -

2 user-defined
2 enter
3 change---
4. delete ...

1 character
2 field
3 section
4 page---
5 [other] - - - _ _______

-48-

USI Capability R U N

1.5. Tabular Data
1. format. . .
1. predefined. . .
1 header
2 row (object) -- -
3 column (property) - - -
4 page- - -
5 [other] - - - ____________

2 user-defined
2 enter
3 change- - -
4. delete. . .
1 character
2 field
3 row
4 column
5 page- - -
6 [other] - - - ____ _______

1.6. Graphic Data
1. format . . .
1. predefined . . .
1. plot type . . .

1 geographic - - -

2 line graph - - -

3 bar graph- - -
4 pie chart- - -
5 [other] - - - ___________

2 background/map - - -
3 data category - - -

4 symbol- - -
5 [other]- - - _______ ____

2 user-defined
2 enter
3 change- - -
4. delete . . .
1 point- - -

2symbol
3drawn line

-49-

USI Capability R U N

1.7. Data Validation
1. required entry
1 immediate
2 deferrable

2. length of entry
1 fixed
2 maximum
3 minimum

3. content of entry
1 numeric
2 alphabetic
3 alphanumeric
4 defined codes
5 [other] - - -

4. comparative checks
1 equal to
2 greater than
3 less than
4 IF...THEN
5 (other] - - -

5. default entry .

1 predefined - - -

2 user-defined

1.8. Other Data Processing
1. file management .

1 merging/linking - - -
2. cross-file update .

1 automatic
2 by request - - -

2. derived statistics .

1 total
2 mean
3 median
4 range (of values)
5 [other] - - -

3. other computation .

1 date/time
2 grid conversion
3 azimuth
4 range (distance) - - -

5 [other] - - -

-50-

USI Capability R U N

1.9. Design Change
1. type

1 file formats

2 entry formats

3 item specification

4 data processing

5 [other]

2. implementation .

i. on-line
1 by transaction

2 by software change

2 off-line

-51-

USI Capability R U N

2.0 DATA DISPLAY

2.1. Data Type
1. text. . .
1. formatted. . .
1 messages ---

2 reports - - -

2 unformatted
2 data forms
3 tables
4. graphics
1 geographic plot- -

2 line graph- - -
3 bar graph- - -
4 pie chart
5 background/map- - -
6 [other] -_ __ __-_ __ __-_

5 combination

2.2. Data Selection
1. automatic . . .
1 predefined- - -
2 user-defined

2. by request . . .
1 file
2file subset
3data item

4. data category . . .
1 time period- - -
2 area
3 [other] - - - ____ _______

5 combination

2.3. Data Aggregation
1 summary display- - -
2 grouped data- - -
3 individual items

2.4. Display Generation
1. automatic . . .

1 predefined - - -

2 user-defined
2 by request - - -

-52-

USI Capability R U N

2.5. Display Partitioning...
1. fixed windows...
1 display title---
2 page number---
3 date/time group - - -

4 error messages - - -

5 command entry area -_-_
6 [other] - - - ___________

2. variable windows...
1 automatic
2 by request - - -

3 multiple displays---
4. printout

1 from display---
2 from files
3 selected data

5. auditory display...
1 alerting signals - - -

2 error messages - - -

3 advisory information __-

2.6. Display Density
1. text . . .

1 high (> 1000 char.) ---

2 moderate
3 low (< 600 char.) - - -

2. data forms ...

1 high (> 600 char.) - --

2 moderate
3 low (< 300 char.) - - -

3. tabular ...

1 high (> 600 char.) - - -

2 moderate
3 low (< 300 char.) - - -

4. graphic ...

1 high (> 300 char.) - - -

2 moderate
'L3 low (< 100 char.)---

USI Capability R U N

2.7. Display Coding
1. variables/dimensionis ...
1 many---
2 moderate - --

3 few- - -
2. categories/values
1 many (> 20)---
2 moderate (8-20) - - -

3 few (3-7)---
4 just two---

3. criticality
I high---
2 moderate/low - - -

4. code format
1 predefined --

2 user-defined-
5. auditory coding
1 voice---

2 other signals - - -

2.8. Display Coverage
1. displacement...
1. page
1. stepwise...
1 forward
2 back---

2 by page number---
2. scroll.
1 forward---
2 back---

3 offset---
2. expansion ...

1. discrete increments ...

1 predefined - - -

2 user-defined - - -

2. continuous ...

1 zoom in --
2 zoom out

3. return/normalize ...

1 automatic -- -

2 by request--

-54-

USI Capability R U N

2.9. Display Update
1. initiation. . .
1 automatic
2 by request- - -

2. rate. . .
1 normal
2. modified. . .
1 fast
2 slow

3 freeze

2.10. Display Suppression
1. initiation. . .
1. automatic. . .
1. timeout. . .
1 one step- - -
2 gradual fading - - -

2 [other] - - -

2. by request. . .
1 data item
2. data category. . .
1 time period - - -

2 area
3 [other] - - -

3 all data (ERASE)
2. duration. . .
1 continuing- - -
2. temporary. . .
1 automatic
2 by request - - -

2.11. Design Change
1. function . . .
1 data type- - -
2 selection
3 aggregation- - -
4 display generation - - -
5 partitioning - - -

6 density - - -

7 coding- - -
8 coverage - - -

9 update'I10 suppression - - -
2. implementation. . .
1. on-line . . .

j ~1 by transaction- - -
2by software change - - -

2 off-line

-55-

USI Capability R U N

3.0 SEQUENCE CONTROL

3.1. Dialogue Type
1 question and answer
2 form filling
3 menu selection
4 function keys
5 command language - -

6 query language
7 natural language - - -

8 graphic interaction

3.2. Transaction Selection
1 general OPTIONS
2 implicit options - - -

3. step-specific options
1 automatic
2 by request - - -

4 stacked commands
5. linked commands (macros)

1 predefined - - -

2 user-defined

3.3. Interrupt
1 CANCEL
2 BACKUP
3 RESTART
4 ABORT
5 END

3.4. Context Definition
1 predefined - - -

2. user-defined
1 by command
2 by data category
3 by data item

3.5. Error Management
1 explicit ENTER
2 automatic validation
3 direct error correction
4 CONFIRM protection

-56-

USI Capability R U N

3.6. Alarms

1. alarm conditions
1 predefined - - -

2. user-defined
1 variables/dimensions
2 categories/values - - -

2. alarm acknowledgment
1. automatic

1 by timeout
2 by implicit action
3 by correction
4 by user override

2. user action

1 predefined
2 user-defined

3.7. Design Change
1. function .

1 dialogue type
2 available options

3 sequence logic
4 data processing
5 [other] -_-_-

2. implementation .
1. on-line .

1 by transaction

2 by software change
2 off-line

-57-

USI Capability R U N

4.0 USER GUIDAN~CE

4.1. Status Information
1. operability. . .
1 local work station
2. system. . .

1 equipment - - -

2 data files
3 functions

3 external
2 current users
3 current load
4 other notices
5. date/time signals. . .
1 continuous
2 periodic - - -

3 by request - - -

6. alarm signals. . .
1 variables/dimensions
2 categories/values - - -

4.2. Routine Feedback
1. input . . .

1 data entry - - -

2 data change - - -
3 data deletion

2. output . . .
1 data displayed - - -
2 partial display
3 data not available

3. sequence control . . .
1 requested transaction - - -
2 changed context- - -
3 [other] - - - ___________

4.3. Error Feedback
1 error type
2 correction procedure- - -

3 alert signals- - -

4 cursor position
5 user confirmation

-58-

USI Capability R U N

4.4. Job Aids
1. automatic prompts...[I1 fixed messages - - -
2. contingent on input ...

1 data entry - - -

2 command selection
3 context change - - -

3. command aiding .____.___._

1 branching options- - -
2disambiguation
3 [other] - - ____________

4. cursor position...
1 command entry area
2 data entry field
3 error location
4 off screen
5 [other] - - - ____________

2. by request...
1 data index
2 command index
3 HELP, EXPLAIN
4 on-job training - - -
5 [other]- - - _______ ____

3. instructional level ...
1 novice users
2. transitional users ...
1 by time of use---
2 by measured skill ---
3 [other] - - - ___________

3 expert users---

4.5. User Records
1 transactions
2 files accessed
3 programs used
4. errors made ...

1 data entry/change---
2 sequence control---

5 help requested---
6 [other] - - - _________

-59-

USI Capability R U N

4.6. Design Change
1. type

1 status information
2 alarms/alerts - - -

3 error messages - - -

4 prompts - - -

5 auxiliary help - - -

6 training aids
7 [other] -_-_-

2. implementation .

1. on-line .

1 by transaction
2 by software change - --

2 off-line

-60-

USI Capability R U N

5.0 DATA TRANSMISSION

5.1. Data Type
1. text
1. formatted

1 messages
2 documents

2 unformatted
2 data forms
3 tabular
4 graphic - - -

5 alarm/alert signals

5.2. Source
1 own display - - -

2 own files
3 other users
4 other files
5 external
6 [other] - - -

5.3. Destination
1 own display - - -
2 own files
3 local printer - - -

4 other users
5 other files
6 remote printer - - -

7 external
8 [other]

-61-

USI Capability R U N

5.4. Transmission Control
1. data specification...
I by source---
2. by display name...
1 all
2 designated part - - -

3. by file name...
1 all
2 designated part - - -

4. by data name...
1 category - - -

2 item
2. routing...
1. address headers...

1 predefined - - -

2 user-defined
2 subject descriptors - - -

3. initiation ...

1. automatic ...

1 continuous
2 periodic - - -

3 contingent - - -

2 by request - - -

5.5. Feedback
1. data sent ...

1 initia-ad
2 confirmed
3 failed

2. data received ...

1 source
2 type---
3 priority---

3. availability ...

1. automatic ...

1 predefined---
2 user-defined

2 by request---

5.6. Queuing
1 automatic
2 by request - - -

-62-

USI Capability R U N

5.7. Record Keeping
1. log. . .

1 automatic - --

2 by request - - -

2. journal. . .

1 automatic - --

2 by request- - -

5.8. Design Change
1. function . . .

1 data type- - -
2 source
3 destination- - -

4 transmission control _

5 feedback - - -

6 queueing- - -
7 record keeping - -

2. implementation . . .
1. on-line . . .

1 by transaction- - -
2 by software change - - -

2 off-line - - -

-63-

USI Capability R U N

6.0 DATA PROTECTION

6.1. User Identification
1 user code
2 station code
3 job code
4 project code- - -
5. password. . .

1. fixed
1 assigned- -

2 user-chosen
2. changing. . .
1 assigned- -

2 user-chosen

6.2. Data Access
1. user code. . .
1 for file
2 for data category - - -

3 (other]- - - _______ ____

2. password. . .
1 for file
2 for data category- - -

3 [other]- - - _______ ____

3. access record . . .
1 for user
2 for file
3 for data category- - -

4 [other]- - _______ ____

6.3. Data Change
1. user code . . .
1 for file
2 for data category - - -

3 [other] - - - ____ _______

2. password
1 for file
2 for data category - - -

3 [other] - - - ____________

3. change record . . .
1 for user
2 for file
3 for data category - - -

4 [other]- - - _______ ____

4. error prevention . . .
1 data validation
2 redundant entry - - -

-64-

USI Capability R U N

6.4. Data Transmission
1. source...
1 automatic
2 by request --

2. destination...
1 automatic
2 by request - - -

3. transmission control ...

1 automatic
2 by request - --

6.5. Loss Prevention
1. reversible procedures ...
1 BACKUP
2 CONFIRM

2. file protection...
1. SAVE. . .
1 automatic
2 by request---

2. archive ...

1 automatic
2 by request---

3. data tranismission ...

1 parity check---
2 [other] - - - ____________

6.6. Design Change
1. type . . .
1 user identification _

2 data access
3 data change - - -

4 data transmission_
5 loss prevention - - -
6 [other] -_____-_____-__

2. implementation.
1. on-line ...

I by transaction---
2 by software change - - -

2 off-line
3. change control ...

I data entry - - -

2 data display - - -

3 sequence control---
4 user guidance - - -

5 data transmission _

6 data protection - - -

-65-

APPENDIX B

DESIGN GUIDELINES FOR DATA ENTRY FUNCTIONS

Data entry refers to input by the user of data items to be
processed. Command inputs or option selections intended to control
data processing are considered separately in the discussion of
sequence control (Appendix D). Data entry is heavily emphasized in
tasks related to clerical jobs, and many other tasks involve data
entry to some degree. Because data entry is so common, because the
requirements of data entry seem to be readily understood, and
because inefficiencies caused by poorly designed data entry are so
apparent, many of the published recommendations for good USI design
deal with this topic.

Design of data input transactions is necessarily influenced by
hardware selection. For that reason, design guidelines for input
devices receive considerable attention. A notable example is
standardization of keyboard layouts. Future technological advances
in input hardware may well influence the design of data entry tasks,
presaged perhaps by the current advocacy of voice input. But the
major need in information systems is for consistently good software
design. It is in improving the logic of data entry that the chief
gains can be made, and it is here that design guidance should prove
most helpful.

Some ideas seem so basic that they are seldom expressed as
explicit design principles. Here is an example: a user should not
have to enter the same data twice. Now that is something every
designer knows, even if it is sometimes forgotten. A corollary is
this: a user should not have to enter a data item already entered
by another user. That seems to be good common sense, although one
could imagine occasional exceptions to the rule when cross
validation of data inputs may be required.

How can duplicative data entry be avoided in practice? The
solution lies in designing the USI (i.e., programming the computer)
to maintain context. Thus when a user identifies a particular
category of interest, for example a squadron of aircraft, the
computer should be able to access all previously entered data
relevant to that squadron and not require the user to enter such
data again.

In repetitive data entry transactions the user should have some
means of establishing context, for example by defining default
entries for selected data items, in effect telling the computer
those items will stay the same until the default value is changed or

-67-

PMS m

removed. If the user enters one item of data about a particular
squadron, it should be possible to enter a second item immediately
thereafter without having to re-identify that squadron.

Context should also be preserved to help speed correction of
input errors. One significant advantage of on-line data entry is
the opportunity for immediate computer validation of user inputs,
with timely feedback so that the user can correct detected errors
while that set of entries is still fresh in his mind and/or while
documented source data are still at hand. Here the computer should
preserve the context of each data entry transaction, saving correct
items so that the user does not have to enter those again while
changing incorrect items.

Preservation of
context is, of

course, important
in all aspects

sequence control and user guidance, as well as for data entry. The
importance of context is emphasized again in the discussion of those
other functional areas.

Another important design concept is that of flexibility. The
idea that USI design should adapt flexibly to user needs is often
expressed. The means of achieving such flexibility should be
spelled out in USI guidelines. For data entry functions it is
important that the pacing of inputs be controlled flexibly by the
user. Tasks where the pacing of user inputs is set by a machine
Cfor example, keying ZIP codes at an "automated" post office) are
stressful and error-prone.

Aside from flexibility in pacing, the user will often benefit
from having some flexible choice in the ordering of inputs.
Although this kind of flexibility is related to the topic of
sequence control, it merits discussion here as well. What is needed
for USI design is some sort of suspense file(s) to permit flexible
ordering of user inputs, including temporary omission of unknown
items, backup to correct mistaken entries, cancellation of
incomplete transactions, etc.

As noted earlier, the user may also benefit from flexibility in
defining default options to simplify data entry during a sequence of
transactions. Some systems include only those defaults anticipated
by the designers, which may not prove helpful to the user in a
particular instance.

These general concepts are represented in the specific design
guidelines for data entry functions proposed in the following pages.

-68-

DATA ENTRY Objectives:

Minimized input actions by user
Low memory load on user
Consistency of data entry transactions
Compatibility of data entry with data display
Flexibility for user control of data entry

1.0 General

-1 When data entry is a significant task function, it should be
accomplished via the user's primary display.

Example: Entry via typewriter is acceptable only if the
typewriter itself, under computer control, is the primary
display medium.

Comment: When the primary display is basically formatted
for other purposes, such as a graphic display for process
control, a separate "window" on the display may have to be
reserved for data entry.

-2 Data entry transactions, and associated displays, should be
designed so that the user can stay with one mode of entry as
long as necessary for the data entry task, before having to

shift to another.

Example: Shifts from lightpen to keyboard input and then
back again should be minimized.

Comment: This, like other guidelines here, assumes a
task-oriented user, busy or even overloaded, who needs
efficiency of data entry.

Reference: EG 6.1.1.

-Keeipton Phuasswds adoter secue entries.

-KEeins sdls appoter incthe display.

Reference: EG 6.3.7; KS 5.15.3.9.4.2.

-4 Keyed data entry on an electronic display should generally be
accomplished by direct character replacement, in which keyed
inputs replace underscores (or other delimiter symbols) in
defined data fields.

Exception: For general text entry, no field delimiters are
needed.

-69-

1.0 General (cont.)

-5 For data change, a consistent mode should be adopted, in which
new entries replace previous entries (including default values,
if any) either by direct character substitution, or by
insertion and deletion.

Example: Text editing can be handled either way.

Comment: In many cases, direct modification of displayed
data will reduce keying and permit more compact display
formats. There may be some risk of user confusion, however,
in replacement of an old value with a new one, during the
transitional period when the item being changed is seen as a
composite beginning with the new value and ending with the
old.

Comment: In some cases it may help the user to key a new
entry directly above or below display of the prior entry it
will replace, if that is done consistently. Here the user
can compare values before confirming entry of the new data
and deletion of the old.

-6 Whenever possible, data entry should be self-paced, depending
upon the user's needs, attention span and time available,
rather than computer processing or external events.

Comment: When self-pacing does not seem feasible, the
general approach to task allocation and USI design should be
reconsidered.

-7 Data entry should not be slowed or paced by delays in control
response; for normal operation, control delays or lockouts
should not exceed 0.2 seconds.

Example: Key press followed by display of symbol.

Comment: This recommendation is intended to ensure
efficient operation in routine, repetitive data entry tasks.
Somewhat longer delays may be tolerable in special
circumstances, perhaps to reduce variability in control
response, or perhaps in cases where data entry comprises a
relatively small portion of the user's task.

Reference: EG Table 2.

-70-

1.0 General (cont.)

-8 Data input should always require an explicit ENTER action, and
not be accomplished as a side effect of some other action.

Example: Returning to a menu of control options should not
by itself result in entry of data just keyed onto a display.

Comment: This practice permits the user to review data and
correct errors before computer processing, particularly
helpful when data entry is complex and/or difficult to
reverse.

-9 An ENTER key should be explicitly labeled to indicate its
function to the user.

Example: The ENTER key should not be labeled in terms of
mechanism, such as CR or RETURN or XMIT.

Comment: For a computer-naive user, the label should
perhaps be even more explicit, such as ENTER DATA. Ideally,
one consistent ENTER label would be adopted for all systems
and so become familiar to all users.

Reference: PR 3.3.9.

-10 When a stored data item is changed (or deleted) by direct
command entry without first being displayed, then both the old
and new values should be displayed so that the user can confirm
or nullify the change before the transaction is completed.

Comment: This practice will tend to prevent inadvertent
change, and is particularly useful in protecting delete
actions. Like other recommendations intended to reduce
error, it assumes that accuracy of data input is worth extra
keying action by the user. For some tasks, that may not be
true.

-11 Ideally, the length of an individual data entry should not
exceed 5-7 characters.

Exception: Meaningful words and general textual material.

Comment: Longer items exceed the user's memory span,
inducing errors in both data entry and data review.

Reference: BB 2.5.2; EG 6.3.3.

-71-

1.0 General (cont.)

-12 When a long data item must be entered, it should be partitioned
into shorter symbol groups for both entry and display.

Example: A 10-digit telephone number can be entered as
three groups, NNN-NNN-NNNN.

-13 When portions of a long item are highly familiar, ideally those
should be entered last.

Exception: But not if that sequence would violate a
functional requirement, such as initial keying of area code
in telephone numbers, or if common usage puts the familiar
first.

Comment: This practice will reduce the load on the user's

short-term memory.

Reference: EG 6.3.4.

-14 Minimize data entry keying by abbreviating lengthy inputs, when
that can be done without ambiguity.

Comment: Some flexibility should be provided for users of
different ability. Novice and/or occasional users may
prefer to make full-form entries, while ;xperienced users
will learn and benefit from appropriate abbreviations.

Reference: BB 6.4.1; EG 6.3.5.

-15 When abbreviations are used to shorten data entry, those
abbreviations should follow some consistent rule that can be
explained to the user.

Example: Simple truncation is probably the best choice.

Comment: It is important for both encoding and decoding
abbreviations that the user know what the rule is.
Truncation provides inexperienced users with a straight-
forward and highly successful method for generating
abbreviations, and is a rule that can be easily explained.
Moreover, truncation works at least as well as more
complicated rules involving word contraction with omission
of vowels, etc.

Reference: Moses and Ehrenreich, 1981.

* j -72-

1.0 General (cont.)

-16 Abbreviations should be of fixed length.

Comment: Desirable length will depend upon the vocabulary
size of words to be abbreviated. For a vocabulary of 75
words, 4-letter abbreviations will suffice. For smaller
vocabularies, shorter abbreviations can be used.

Reference: Moses and Ehrenreich, 1981.

-17 Special abbreviations (i.*., those not formed by consistent
rule) should be used only when required for clarity.

Comment: Special abbreviations will be needed to
distinguish between words whose abbreviations by rule are
identical, or when abbreviation by rule forms another word,
or when the special abbreviation is already familiar to
system users. Such special cases should represent less than
10 percent of all abbreviations used.

Reference: Moses and Ehrenreich, 1981.

-18 When an abbreviation must deviate from the consistent rule, the
extent of deviation should be minimized.

Example: Letters in the truncated form should be changed

one at a time until a unique abbreviation is achieved.

Reference: Moses and Ehrenreich, 1981.

-19 When abbreviated data entries are not recognized, the computer
should apply data validation routines and interrogate the user
as necessary to resolve any ambiguity.

-20 When abbreviated codes are used to shorten data entry, code
values should be designed to be meaningful and distinctive in
order to avoid potentially confusing similarity.

Example: BOS vs. LAS is good; but LAX vs. LAS risks
confusion.

-73-

1.0 General (cont.)

-21 When code values must be entered, menu selection should be
considered as an appropriate dialogue mode, rather than keyed
entry.

Comment: Menu selection will prove more accurate than keyed
entry for arbitrary codes. Menu selection does not require
the user to remember codes and does not require the user to
key code entries accurately.

Reference: Siebel, 1972; Gade, Fields, Maisano and
Marshall, 1980.

See also: Section 3.1.3.

-22 When alphabetic data entry is required, the user should be able
to enter each letter with a single stroke of an appropriately
labeled key.

Comment: More complex double-keying methods will require
special user training, and will risk frequent data entry
errors.

Comment: Software might be provided to interrogate the user
to resolve any input ambiguities resulting from hardware
limitations, such as when several letters are represented on
each key of a button panel used primarily for numeric entry.

Reference: Smith and Goodwin, 1971a.

-23 Special characters requiring shift keying should be avoided

insofar as possible.

Comment: Conversely, keyboard designers should put
frequently used special cl.aracters where they can be easily
keyed.

Reference: EG 6.3.12.

-24 Entry of leading zeros should be optional for general numeric

input.

Exception: Special cases such as entry of serial numbers or
other numeric identifiers.

Reference: BB 6.2.3; EG 6.3.11.

-74-

1.1 Position Designation (Cursor Control)

-1 Position designation on an electronic display should be
accomplished by means of a movable cursor with distinctive
visual features (shape, blink, etc.).

Exception: When position designation involves only
selection among displayed alternatives, then some form of
highlighting selected items might be used instead of a
separately displayed cursor.

-2 If multiple cursors are used (e.g., one for alphanumeric entry,
one for tracking, one for line drawing), they should be
visually distinctive from one another.

-3 The cursor should be designed so that it does not obscure any
other character displayed in the position designated by the
cursor.

-4 When fine accuracy of positioning is required, as in some forms
of graphic interaction, the displayed cursor should include a
point designation feature.

Example: A cross may suffice (like cross-hairs in a
telescope), or perhaps a notched or V-shaped symbol (like a
gun sight).

-5 Actual entry ("activation") of a designated position should be
accomplished by an explicit user action distinct from cursor
placement.

Exception: Tracking tasks and other situations where the
need for rapid input may override the need to reduce entry
errors.

Reference: MS 5.15.3.9.2.4.b.

-6 Computer acceptance of a designated position should be signaled
by direct feedback to the user within 0.2 seconds.

Example: Almost any consistently programmed display change
will suffice, perhaps brightening or flashing a selected
symbol; in some applications it may be desirable to provide
an explicit message indicating that a selection has been
made.

Reference: EG Table 2; MS 5.15.1.4.a, 5.15.3.9.2.4.a.

-75-

;7 Postione is a preefn.OM position for the cursor, which is

usually the case, that position should be consistent on
displays of a given type.

Example: HOME might be in the upper left corner of a text
display, or at the first field in a form-filling display, or
at the center of a graphic display.

Comment: The HOME position of the cursor should also be
consistent in different windows/sections of a partitioned
display.

-8. For arbitrary position designation, the cursor control should
permit both fast movement and accurate placement.

Comment: Rough positioning should take no more than 0.5
seconds for a displacement of 20-30 cm on the display. Fine
positioning may require incremental stepping of the cursor,
or a control device incorporating a large control/display
ratio for small displacements, or a selectable vernier mode
of control use.

Reference: EG 6.1.

-9 The displayed cursor should be stable, i.e., should remain
where it is placed until moved by the user (or computer) to
another position.

Comment: Some special applications, such as aided tracking,
may benefit from computer-controlled cursor movement. The
intent of the recommendation here is to avoid unwanted
"drift".

Reference: EG 6.1.

-10 When cursor positioning is incremental by discrete steps, the *
step size of cursor movement should be consistent in both right
and left directions, and both up and down directions.

*-11 When character size is variable on the display, incremental
cursor positioning should have a variable step size* j corresponding to the size of currently selected characters.

-76-

1. 1 Position Designation (cont.)

-12 If proportional spacing is used for displayed text, the
computer should be programmed to make necessary adjustments
automatically when the cursor is being positioned for data
entry or data change.

Exception: Manual override may help the user in special
cases where automatic spacing is not wanted.

Comment: The user cannot be relied upon to handle
proportional spacing accurately.

-13 Continuous position designation, such as used for input of
track data, should be accomplished by continuously operable
controls (e.g., thumb wheel for one dimension, joystick for two
dimensions) rather than by incremental, discrete key actions.

-14 When position designation is the sole or prime means of data
entry, as in selection of displayed alternatives, cursor
placement should be accomplished by a direct-pointing device
(e.g., lightpen) rather than by incremental stepping or slewing
controls (keys, joystick, etc.).

-15 In selection of displayed alternatives, the acceptable area for
cursor placement should be made as large as consistently
possible, including at least the area of the displayed label
plus a half-character distance around the label.

Reference: EG 2.3.13, 6.1.3.

-16 When position designation is required in a task emphasizing
keyed data entry, cursor movement should be controlled by some
device integral to the keyboard (function keys, joystick,
"tcat", etc.) rather than by a separately manipulated device
(lightpen, "mouse", etc.).

-17 Multiple cursors should be displayed only when justified by
carpful task analysis.

Comment: Multiple cursors may confuse a user, and so
require special consideration if advocated in USI design.

-18 If multiple cursors are controlled by a single device, then a
clear signal must be provided to indicate to the user which
cursor is currently under control.

-77-

1.1 Position Designation Ccont.)

-19 If multiple cursors are controlled by different devices, their

separate controls should be compatible in operation.

Reference: Morrill and Davies, 1961.

-20 On initial appearance of a form-filling data entry display, the
cursor should be placed automatically at the first character
position of the first input field.

-21 Displays for form-filling data input should be designed so as
to minimize user actions required for cursor movement from one
entry field to the next.

-22 Sequential cursor positioning in predefined areas, such as
displayed data entry fields, should be accomplished by
programmable tab keys.

Comment: Automatic cursor advance is generally not

desirable.

See also: 1.4-13.

-23 Areas of a display not needed for data entry (such as labels
and blank spaces) should be made inaccessible to the user,
under computer control, so that the cursor does not have to be
stepped through blank areaa nor are they sensitive to pointing
actions.

Exception: When it is expected that a user may have to
modify display formats, such automatic format protection can
be handled as a general default option subject to user
override.

Comment: Mechanical overlays on the display should not be
used for format protection.

Reference: EG 7.5; PR 3.3.2.

-24 User action confirming entry of multiple data items should
result in input of all items, regardless of where the cursor is
placed on the display.

-78-

1.2 Direction Designation

-1 When designation of direction (azimuth, bearing, heading, etc.)
is based on already quantified data, then keyed entry should be
used.

-2 When direction designation is based on graphic representation,
then some "analog" means of entry should be provided, such as
vector rotation on the display, andl3r a suitably designed
rotary switch.

Example: Heading estimation for displayed radar trails.

Exception: When approximate direction designation will
suffice, for just eight cardinal points, keyed entry can be
used. 4
Comment: In matching graphic display, an entry device
providing a visual analog will prove both faster and more
accurate.

Reference: Smith, 1962a.

1.3 Text

(guidelines deferred pending further information)

1.4 Data Forms

-1 Using a form-filling dialogue, entry of logically related items
sLould be accomplished by a single, explicit action at the end,
rather than by separate entry of each item.

Comment: This practice permits user review and possible
data correction prior to entry, and also clarifies for the
user just when grouped data are processed. It will also
permit efficient cross validation of related data items by

the computer.

Comment: Depending on form design, this practice might
involve entering the entire form, or entry by page or
section of a longer form. Just where entry is required

should be indicated to the user.

oe also: 1.0-8.

-79-

1t____

1.4 Data Forms (cont.)

-2 When multiple data items are entered as a single transaction,
as in form filling, the user should be allowed to RESTART,
CANCEL, or BACKUP and change any item before taking a final
ENTER action.

Reference: BB 6.9; MS 5.15.1.2.4, 5.15.3.9.4.1.

See also: 3.5-2

-3 Whenever possible, multiple data items should be entered
without the need for special separators or delimiters, either
by keying into predefined entry fields or by including simple
spaces between sequentially keyed items.

-4 When a field delimiter must be used for data entry, a standard
character should be adopted for that purpose; slash (/) is
recommended.

-5 For all dialogue types involving prompting, data entries should
be prompted explicitly by means of displayed labels for data
entry fields, and/or associated user guidance messages.

-6 Field labels should consistently indicate what data items are
to be entered.

Example: A field labeled NAME should always require name
entry, and not sometimes require something different like
elevation.

-7 In ordinary use, field labels should be protected and
transparent to keyboard control, so that the cursor skips over
them when spacing or tabbing.

Reference: PR 3.3.2, 4.8.1.

-8 Special characters should be used to delineate each entry

field; an underscore is recommended.

Comment: Such implicit prompts help reduce data entry

errors by the user.

* Reference: BE 6.2.1; EG 6.3, 6.3.1; PR 4.8.1.

-80-

1.4 Data Forms (cont.)

-9 Field delineation cues should indicate a fixed or maximum
acceptable length of the entry.

Comment: This method of prompting is more effective than
simply telling the user how long an entry should be, e.g.,
"Enter ID (12 digits)". Underscoring gives a direct visual
cue as to the number of characters to be entered, and the
user does not have to count them.

Reference: BB 6.2.1; EG 6.3; PR 4.8.2.

-10 Similar implicit cues should be provided when data entry is
prompted by auditory displays.

Example: Tone codes can be used to indicate the type and

length of requested data entries.

Reference: Smith and Goodwin, 1970.

-11 Field delineation cues should distinguish required from
optional entries.

Example: A solid underscore might be used to indicate
required entries, a dotted underscore optional entries.

Reference: BB 6.6; PR 4.8.6.

-12 When item length is variable, the user should not have to
justify an entry either right or left, and should not have to
remove any unused underscores; computer processing should
handle those details automatically.

Reference: BB 6.2.2; EG 6.3.2.

-13 When multiple items (especially those of variable length) will
be entered by a skilled touch typist, each entry field should
end with an extra (blank) character space; software should be
designed to prevent keying into a blank space, and an auditory
signal should be provided to alert the user when that happens.

Comment: This will permit consistent use of tab keying to
move from one field to the next.

Reference: PR 4.9.1.

See also: 1.1-22.

~-81-

(

1.4 Data Forms (cont.)

-14 When entry fields are distributed across a display, a
consistent format should be adopted for relating labels to
delineated entry areas.

Example: The label might always be to the left of the
field; or the label might always be immediately above and
left-justified with the beginning of the field.

Comment: Such consistent practice will help the user
distinguish labels from data in distributed displays.

-15 Labels for data entry fields should be distinctively worded, so
that they will not be readily confused with data entries,
labeled control options, guidance messages, or other displayed
material.

-16 In labeling data entry fields, only agreed terms, codes and/or
abbreviations should be used.

Comment: Do not create new jargon; if in doubt, pretest all
proposed wording with a sample of qualified users.

Reference: BB 6.1.5; PR 4.5.6.

See also: 2.1.1-20.

-17 The label for each entry field should end with a special
symbol, signifying that an entry may be made.

Example: A colon is recommended for this purpose, e.g.,
NAME:

Comment: A symbol should be chosen that can be reserved
exclusively for prompting user inputs, or else is rarely
used for any other purpose.

Reference: BB 6.5.

-18 Labels for entry fields may incorporate additional cueing of
data formats when that seems helpful.

Example: DATE (MDY): __/__/__

Example: DATE: _/_/_
MM DD YY

Reference: PR 4.8.9.

-82-

--IIjrll r ...H° ' ...

1.4 Data Forms (cont.)

-19 When a dimensional unit is consistently associated with a
particular data field, it should be displayed as part of the
fixed label rather than entered by the user.

Example: COST:

Example: SPEED (MPH):

Reference: PR 4.8.11.

-20 When alternative dimensional descriptors are acceptable, then
space should be provided in the data field for user entry of a
unit designator.

Example: DISTANCE: MI/KM:

Reference: PR 4.8.11.

-21 Data should be entered in units that are familiar to the user.

Comment: Data conversion, if necessary, should be handled
by the computer.

Reference: BB 6.3.

-22 When data entry displays are crowded, auxiliary coding should
be adopted to distinguish labels from data.

Example: A recommended practice is to display fixed,
familiar labels in dim characters, with data entries bright.

Comment: For novice users, it may sometimes be helpful to
have brighter labels, if that could be provided as a
selectable option.

Reference: PR 3.3.2.

See also: 2.1.2-7.

-83-

1.4 Data Forms (cont.)

-23 The display format for data entry should be compatible with
whatever format is used for display output, scanning and review
of the same data; item labels and ordering should be preserved
consistently from one display to the other.

Comment: When a display format optimized for data entry
seems unsuited for data display, or vice versa, some
compromise format should be designed taking into account the
relative functional importance of data entry and data review
in the user's task.

See also: 2.3-2.

-24 When data entry involves transcription from source documents,
form-filling displays should match (or be compatible with)
paper forms; in a question-and-answer dialogue, the sequence of
entry should match the data sequence in source documents.

Comment: When paper forms are not optimal for data entry,
consider revising the layout of the paper form.

Comment: When data entries must follow an arbitrary
sequence of external information (e.g., keying telephoned
reservation data), some form of command language dialogue
should be used instead of form filling, to identify each
item as it is entered so that the user does not have to
remember and re-order items.

Reference: BB 2.8.9; PR 4.8.3, 4.8.5.

See also: 2.3-2.

-25 If no source document or external information is involved, the
ordering of multiple-item data entries should follow the
logical sequence in which the user can be expected to think of
them.

Comment: Alternatively, data entry can sometimes be made
more efficient by placing all required fields before any
optional fields.

Reference: BB 6.6; PR 4.8.5.

See also: 2.3-2.

-84-

1.4 Data Forms Ccont.)

-26 When a form for data input is displayed, the cursor should be
positioned automatically in the first entry field.

Exception: If a data form is regenerated following an entry
error, the cursor should be positioned in the first field in
which an error has been detected.

Reference: PR 4.9.1.

1.5 Tabular Data

-1 When sets of data items must be entered sequentially, in a
repetitive series, a tabular format where data sets are keyed
row by row should be considered to facilitate the process.

Exception: When the items in each data set will exceed the
display capacity of a single row, tabular entry will usually
not be desirable.

Reference: PR 4.8.4.

-2 Column headers and row labels should be worded informatively,
so as to help guide data entry.

-3 Column headers and row labels should be formatted
distinctively, so as to distinguish them from data entries.

-4 When tabular formats are used for data entry, column labels
should be left-justified with the leftmost position beginning
column entries.

Comment: This consistent practice will prove especially
helpful when columns vary in width.

-5 Justification of tabular data entries should be handled
automatically by the computer; the user should not have-to
enter any leading blanks or other extraneous formatting

characters.

* Reference: BB 6.2.3.

-85-

1.5 Tabular Data (cant.)

-6 It should be possible for the user to make numeric entries
(e.g., dollars and cents) as left-justified, but they should be
automatically justified with respect to a fixed decimal point
when a display of those data is subsequently regenerated for
review by the user.

Reference: PR 4.8.10.

-7 For input of tabular data, when vertical repetition of entries
is frequent the user should be provided a DITITO key to speed
entry of duplicative data.

-8 For dense tables, those with many row entries, some extra
visual cue should be provided to guide the user accurately
across columns.

Example: A blank line after every fifth row is recommended.
Alternatively, adding dots between columns at every fifth
row may suffice.

Comment: This practice is probably more critical for
accurate data review and change than it is for initial data
entry, but is desirable in the interest of compatible
display formats.

1.6 Graphic Data

(no guidelines presently available)

1.7 Data Validation

-1 Automatic data validation software should be incorporated to
check any entry whose input and/or correct format or content is
required for subsequent data processing.

Comment: Do not rely on the user always to make correct
inputs. When validity of data entries can be established
automatically, computer checking will be more accurate.

Reference: MS 5.15.1.2.2; PR 4.12.4.

-86-

1.4 Data Forms (cont.)

-26 When a form for data input is displayed, the cursor should be
positioned automatically in the first entry field.

Exception: If a data form is regenerated following an entry
error, the cursor should be positioned in the first field in
which an error has been detected.

Reference: PR 4.9.1.

1.5 Tabular Data

-1 When sets of data items must be entered sequentially, in a
repetitive series, a tabular format where data sets are keyed
row by row should be considered to facilitate the process.

Exception: When the items in each data set will exceed the
display capacity of a single row, tabular entry will usually
not be desirable.

Reference: PR 4.8.4.

-2 Column headers and row labels should be worded informatively,

so as to help guide data entry.

-3 Column headers and row labels should be formatted

distinctively, so as to distinguish them from data entries.

-4 When tabular formats are used for data entry, column labels
should be left-justified with the leftmost position beginning
column entries.

Comment: This consistent practice will prove especially
helpful when columns vary in width.

-5 Justification of tabular data entries should be handled
automatically by the computer; the user should not have to
enter any leading blanks or other extraneous formatting
characters.

Reference: BB 6.2.3.

-85-

1.5 Tabular Data (cont.)

-6 It should be possible for the user to make numeric entries
(e.g., dollars and cents) as left-justified, but they should be
automatically justified with respect to a fixed decimal point
when a display of those data is subsequently regenerated for
review by the user.

Reference: PR 4.8.10.

-7 For input of tabular data, when vertical repetition of entries
is frequent the user should be provided a DIMT key to speed
entry of duplicative data.

-8 For dense tables, those with many row entries, some extra
visual cue should be provided to guide the user accurately
across columns.

Example: A blank line after every fifth row is recommended.
Alternatively, adding dots between columns at every fifth
row may suffice.

Comment: This practice is probably more critical for
accurate data review and change than it is for initial data
entry, but is desirable in the interest of compatible
display formats.

1.6 Graphic Data

(no guidelines presently available)

1.7 Data Validation

-1 Automatic data validation software should be incorporated to
check any entry whose input and/or correct format or content is
required for subsequent data processing.

Comment: Do not rely on the user always to make correct
inputs. When validity of data entries can be established
automatically, computer checking will be more accurate.

Reference: MS 5.15.1.2.2; PR 4.12.4.

-86-

1.4 Data Forms (cont.)

-26 When a form for data input is displayed, the cursor should be
positioned automatically in the first entry field.

Exception: If a data form is regenerated following an entry
error, the cursor should be positioned in the first field in
which an error has been detected.

Reference: PR 4.9.1.

1.5 Tabular Data

-1 When sets of data items must be entered sequentially, in a
repetitive series, a tabular format where data sets are keyed
row by row should be considered to facilitate the process.

Exception: When the items in each data set will exceed the
display capacity of a single row, tabular entry will usually
not be desirable.

Reference: PR 4.8.4.

-2 Column headers and row labels should be worded informatively,
so as to help guide data entry.

-3 Column headers and row labels should be formatted
distinctively, so as to distinguish them from data entries.

-4 When tabular formats are used for data entry, column labels
should be left-justified with the leftmost position beginning
column entries.

Comment: This consistent practice will prove especially
helpful when columns vary in width.

-5 Justification of tabular data entries should be handled
automatically by the computer; the user should not have to
enter any leading blanks or other extraneous formatting
characters.

Reference: BB 6.2.3.

-85-

1.5 Tabular Data (cont.)

-6 It should be possible for the user to make numeric entries

(e.g., dollars and cents) as left-justified, but they should be
automatically justified with respect to a fixed decimal point
when a display of those data is subsequently regenerated for
review by the user.

Reference: PR 4.8.10.

-7 For input of tabular data, when vertical repetition of entries
is frequent the user should be provided a DITTO key to speed
entry of duplicative data.

-8 For dense tables, those with many row entries, some extra
visual cue should be provided to guide the user accurately
across columns.

Example: A blank line after every fifth row is recommended.
Alternatively, adding dots between columns at every fifth
row may suffice.

Comment: This practice is probably more critical for
accurate data review and change than it is for initial data
entry, but is desirable in the interest of compatible
display formats.

1.6 Graphic Data

(no guidelines presently available)

1.7 Data Validation

-1 Automatic data validation software should be incorporated to
check any entry whose input and/or correct format or content is
required for subsequent data processing.

Comment: Do not rely on the user always to make correct
inputs. When validity of data entries can be established
automatically, computer checking will be more accurate.

Reference: MS 5.15.1.2.2; PR 4.12.4.

-86-

AD-Alis 853 MITRE CORP BEDFORD MA F/6 9/2
USER-SYSTEM INTERFACE DESIGN FOR COMPUTER-BASED INFORMATION SYS -ETC(U)
APR 82 S L SMITH FI62R81 C O001

UNCLASSIFIED MTR-8464 ESD-TR-62-132 NL
22fIIIIIIIIIII

Ihhlllhlllllll
EEEIIIIIIEIIEE
EEIIIIIIIEIIEE
IIIIEIIEEEIII
IIIIIIIIIIIIIu

1.7 Data Validation (cont.)

-2 When required data entries have not been input, but can be
deferred, data validation software should signal that omission
to the user, permitting either immediate or delayed input of
missing items.

Reference: PR 4.8.7.

-3 When entry of a required data item is deferred, the user should
have to enter a special symbol in the data field to indicate
that the item has been temporarily omitted rather than ignored.

Reference: PR 4.8.7, 4.12.2.

-4 In a repetitive data entry task, data validation for one
transaction should be completed, and the user allowed to
correct errors, before another transaction can begin.

Comment: This is particularly important when the user is
transcribing data from source documents, so that detected
input errors can be corrected while the relevant document is
still at hand.

-5 If item-by-item data validation within a multiple-entry
transaction is provided, it should only be as a selectable
option.

Comment: This capability will sometimes help a novice user,
who may be uncertain about what requirements are imposed on
each data item; but it may slow a skilled user if the
computer processing delays next item entry.

Reference: EG 6.3.9.

-6 When helpful default values for data entry cannot be predicted
by USI designers, which is often the case, the user (or perhaps
some authorized supervisor) should have a special transaction
to define, change or remove default values for any data entry
field.

-87-

. 1

1.7 Data Validation (cont.)

-7 On initiation of a data entry transaction, currently defined
default values should be displayed automatically in their
appropriate data fields.

Comment: The user should not be expected to remember them.

Comment: It may be helpful to mark or highlight default
values in some way to distinguish them from new data
entries.

-8 User acceptance of a displayed default value for entry should
be accomplished by simple means, such as by a single confirming
key input, or simply by tabbing past the default field.

Comment: Similar techniques should be used in tasks
involving user review of previously entered data.

-9 In any data input transaction the user should be able to
replace a default value with a different entry, without
necessarily changing the default definition for subsequent
transactions.

1.8 Other Data Processing

-1 A user should not be required to enter "bookkeeping" data that
the computer could determine automatically.

Example: A user generally should not have to identify his
work station to initiate a transaction, nor include other
routine data such as transaction sequence codes.

Comment: Complicated data entry routines imposed in the
interest of security may hinder the user in achieving
effective task performance; other means of ensuring data

security should be considered.

-Be

1.8 Other Data Processing (cont.)

-2 A user should not be required to enter redundant data already
accessible to the computer.

Example: The user should not have to enter both an item
name and identification code when either one defines the
other.

Exception: As needed for resolving ambiguous entries, for
user training, or for security (e.g., user identification).

Comment: Verification of previously entered data is often
better handled by review and confirmation rather than by
re-entry.

Reference: EG 6.3.10.

-3 Data entries made in one transaction should be retrieved by the
computer when relevant to another transaction, and displayed
for user review if appropriate.

Comment: The user should not have to enter such data again.

Reference: BB 6.4.2.

-4 Whenever needed, automatic computation of derived data should
be provided, so that a user does not have to calculate and
enter any number that can be derived from data already
accessible to the computer.

-5 Whenever needed, automatic cross-file updating should be
provided, so that a user does not have to enter the same data
twice.

Example: Assignment of aircraft to a mission should
automatically indicate that commitment in squadron status
files as well as in a mission assignment file.

1.9 Design Change

(no guidelines presently available)

-89-

APPENDIX C

DESIGN GUIDELINES FOR DATA DISPLAY FUNCTIONS

Data display, i.e., some kind of output from a computer to its
users, is needed for all data handling tasks. Data display is
emphasized particularly in monitoring and control tasks. Included
as data display may be hardcopy printouts as well as more mutable
electroic displays. Also included are auxiliary displays and
signaling devices, including voice output, which may alert the user
to unusual conditions. Displays specifically intended to guide the
user in his interaction with the system are discussed separately
under the topic of sequence control (Appendix D).

In general, it may be said that rather less is known about data
display, and information assimilation by the user, than about data
entry. In current information system design, display formatting is
an art. Guidelines are surely needed.

Here again some general concepts deserve emphasis, including
the importance of context and flexibility. Data displays must
always be interpreted in the context of task requirements and user
expectations. An early statement of the need for relevance in data
display seems valid still:

When we examine the process of man-computer
communication from the human point of view, it is useful
to make explicit a distinction which might be described as
contrasting "information" with "data." Used in this
sense, information can be regarded as the answer to a
question, whereas data are the raw materials from which
information is extracted. A man's questions may be vague,
such as, "What's going on here?" or "What should I do
now?" Or they may be much more specific. But if the data
presented to him are not relevant to some explicit or
implicit question, they will be meaningless

What the computer can actually provide the man are
displays of data. What information he is able to extract
from those displays is indicated by his responses. How
effectively the data are processed, organized, and
arranged prior to presentation will determine how
effectively he can and will extract the information he
requires from his display. Too frequently these two terms

data and information are confused, and the statement, "I
need more infor-mation," is assumed to mean, "I want more

-91-

the required information is not being extracted from the
data. Unless the confusion betwe-vi data and information
is removed, attempts to increase information in a display
are directed at obtaining more data, and the trouble is
exaggerated rather than relieved.

(Smith, 1963b, pages 296-297)

Certainly this distinction between data and information should
be familiar to psychologists, who must customarily distinguish
between a physical stimulus (e.g., "intensity" of a light) and its
perceived effect ("brightness"). The distinction is not familiar to
system designers, however, although the issue itself is often
addressed. In the following description of what has been called the
"information explosion", notice how the terms data and information
are used interchangeably, confounding an otherwise incisive (and
lively) analysis:

The sum total of human knowledge changed very slowly
prior to the relatively recent beginnings of scientific
thought. But it has been estimated that by 1800 it was
doubling every 50 years; by 1950, doubling every 10 years;
and by 1970, doubling every 5 years This is a much
greater growth rate than an exponential increase. In many
fields, even one as old as medicine, more reports have
been written in the last 20 years than in all prior human
history. And now the use of the computer vastly
multiplies the rate at which information can be generated.
The weight of the drawings of a jet plane is greater than
the weight of the plane. The computer files of current

* IBM customer orders contain more than 100 billion bits of
information - - more than the information in a library of
50,000 books.

For man, this is a hostile environment. His mind
could no more cope with this deluge of data, than his body
could cope with outer space. He needs protection. The
computer - - in part the cause of the problem - - is also
the solution to the problem. The computer will insulate
man from the raging torrents of information that are
descending upon him.

The information of the computerized society will be
gathered, indexed, and stored in vast data banks by the
computers. When man needs a small item of information he
will request it from the computers. The machines, to
satisfy his need, will sometimes carry on a simple
dialogue with him until he obtains the data he wants.

-92-

With the early computers, a manager would often have
dumped on his desk an indigestible printout -- sometimes
several hundred pages long. Now the manager is more
likely to request information when he needs it, and
receive data about a single item or situation on a screen
or small printer.

It is as though man were surviving in the depths of
this sea of information in a bathyscaphe. Life in the
bathyscaphe is simple, protected as it is from the
pressure of the vast quantities of data. Every now and
then man peers through the windows of the bathyscaphe to
obtain facts that are necessary for some purpose or other.
The facts that he obtains at any one time are no more than
his animal brain can handle. The information windows must
be designed so that man, with his limited capabilities,
can locate the data he wants and obtain simple answers to
questions that may need complex processing.

(Martin, 1973, page 6)

Somehow a means must be found to provide and maintain context
in data displays so that the user can find the information he needs
for his job. Task analysis may point the way here, indicating what
data are relevant to each stage of task performance. Design
guidelines must emphasize the value of displaying no more data than
the user needs, maintaining consistent display formats so that the
user always knows where to look for different kinds of information,
and using consistent labeling to help the user relate different data
items, on any one display and from one display to another.

Detailed user information requirements will vary from time to
time, however, and may not be completely predictable in advance,
even from a careful task analysis. Here is where flexibility is
needed, so that data displays can be tailored on-line to user needs.
Such flexibility is sometimes provided through optional category
selection, display offset and expansion features. If such options
for display coverage are available, the user may be able to adjust
his processing of data outputs in a way analogous to self pacing of

* data inputs.

In tasks where a user must both enter and retrieve data, which
is often the case, the formatting of data displays should be
compatible with the methods used for data entry. As an example, if
data entry is accomplished via a form-filling dialogue, with a
particular format for data fields, subsequent retrieval of that data
set should produce an output display with the same format,
especially if the user is expected to make changes to displayed

-93-

data, and/or additional entries. Where compaction of data output is
required for greater efficiency, to review multiple data sets in a
single display frame, the displayed items should retain at least an
ordering and labeling compatible with those fields used previously

* for data entry.

Display design should also be compatible with dialogue types
used for sequence control, and with hardware capabilities. Where
user inputs are made via menu selection, using a pointing device
like a lightpen, then display formats should give prominence (and
adequate separation) to the labeled, lightpezuiable options.

* Location of multi-function keys at the display margin, to be labeled
on the adjacent portion of the display itself, may provide
flexibility for both data entry and sequence control, but will
necessarily constrain the formatting of displays for data output.

These general concepts underlie many of the specific guidelines
for data display that are proposed in the following pages.

-94-

- ~ -- Imp

DATA DISPLAY Objectives:

Efficient information assimilation by the user
Low memory load on user
Consistency of display format
Compatibility of data display with data entry

2.0 Gneral Flexibility for user control
of data display

-1 Displayed data should be tailored to user needs, providing only
necessary and immediately usable information at any step in a
transaction sequence.

Comment: When user needs cannot be exactly anticipated by
the designer, provision should be made for on-line tailoring
of displays by the user, including data selection, display
coverage and display suppression.

Reference: EG 3.1.43 3.3.1; MS 5.15.2.3.

-2 Data should be displayed to the user in directly usable form.

Example: Too cryptic: "Error 459 in column 64." This is
better: "Error 459, character in NAME entry cannot be
recognized."

Comment: The user should not be required to transpose,
compute, interpolate, translate displayed data into other
units, or refer to documentation to determine the meaning of
displayed data.

Reference: BB 3.3; EG 3.3.4; MS 5.15.2.8, 5.15.4.9.

-3 Data should be displayed consistently, following standards and

conventions familiar to the user.

Example: If users work with metric units of measurement, do

not display data in English units, or vice versa.

Example: Computer time records that are not in directly
usable format should be converted for display, to a
conventional 12-hour (AM/PM) clock or a 24-hour clock, in
local time or whatever other time standard is appropriate to
user needs.

Comment: Adopt a consistent standard when no specific user
convention has been established.

Reference: BB 3.4; EG 2.2.4.

-95-

2.0 General (cont.)

-4 An experienced user should be provided means to control the
amount, format, and complexity of displayed data.

Reference: EG 3.4.2.

-5 Data displays should permit direct user change (replacement) of
displayed items, or entry of new items, when that represents an
efficient transaction sequence.

Commnent: Some consistent formatting cue, perhaps different
initial cursor placement, should be provided to inform the
user when displayed data can or cannot be changed.

Reference: PR 4.4.

-6 When integrity of displayed data is essential, maintain
computer control over the display and do not permit the user to
change controlled items.

Comment: Never assume voluntary compliance with
instructions by the user, who may attempt unwanted changes
by mistake, or for curiosity, or to subvert the system.

Reference: EG 3.4.8.

-7 If data must be remembered from one display to another, no more
than 4-6 items should be displayed.

Comment: Better yet, do not require the user to rely on

memory, but recapitulate needed items on the succeeding
display.

Reference: EG 2.3.14, 2.3.15.

-96-

2.1 Data Type

2.1.1 Text

-1 When textual material is formatted, as in structured messages,
headers, etc., consistent format should be maintained from one
display to another.

Comment: A missing item should be shown as a labeled blank,
rather than being omitted from a standard format.

-2 Running text (prose) should be displayed conventionally, in
mixed upper and lower case.

Exception: An item intended to attract the user's
attention, such as a label or title, may be displayed in
upper case.

Exception: Upper case should be used when lower case
letters will have decreased legibility, which is true on
display terminals that cannot show descenders for lower case
letters.

Comment: Normal reading of text is easier with conventional
use of capitalization, i.e., to start sentences, indicate
proper nouns and acronyms, etc.

Reference: BB 2.6; EG 3.4.3.

-3 Displayed text should be left justified to maintain constant
spacing between words.

Exception: When right justification can be achieved by
variable spacing, maintaining constant proportional
differences in spacing between and within words, and
consistent spacing between words in a line.

Comment: Reading is easier with constant spacing, which
outweighs the debatable esthetic advantage of an even right
margin achieved at the cost of uneven spacing. Uneven
spacing is a greater problem with narrow column formats than

with wide columns. Uneven spacing handicaps poor readers
more than good readers.

Reference: PR 4.5.1, 4.10.5; Gregory and Poulton, 1970;
Campbell, Marchetti and Mewhort, 1981.

A- -97-

2.1.1 Text (cont.)

-4 In textual material, words should be displayed intact wherever
possible, with minimal breaking by hyphenation between lines.

Comment: Text is more readable if the entire word is on one
line, even if that makes the right margin more ragged.

Reference: BB 3.2; EG 2.2.10; MS 5.15.4.9.g.

-5 Displayed paragraphs of text should be separated by at least

one blank line.

Reference: EG 2.3.4.

-6 In textual display, every sentence should end with a period.

Reference: EG 2.2.13.

-7 In textual display, the main topic of each sentence should be
placed near the beginning of the sentence.

Reference: BB 3.8.2.

-8 In textual display, short, simple sentences should be used.

Comment: Long sentences with multiple clauses may confuse
the user. Consider breaking long sentences into two or more
shorter statements.

Reference: BB 3.8, 3.8.1; EG 2.2.12; Wright and Reid, 1973.

-9 When speed of display output for textual material is slower
than the user's normal reading speed, an extra effort should be
made to word the text concisely.

Comment: Assume a normal average reading speed of 250 words
per minute.

Reference: EG 3.3.7.

-98-

2.1.1 Text (cont.)

-10 In textual display, affirmative statements should be used
rather than negative statements.

Example: This is potentially confusing: "Do not enter data
before clearing the screen." This is better: "Clear the
screen before entering data."

Comment: Tell the user what to do, rather than what to
avoid.

Reference: BB 3.8.3.

-11 In textual display, sentences in the active voice should be

used rather than passive voice.

Example: "The screen is cleared by pressing RESET" is too

indirect. "Clear the screen by pressing RESET" is better.

Comment: Active voice sentences are generally easier to
understand.

Reference: BB 3.8.5.

-12 In textual display, sentences describing a sequence of events

should be phrased with a corresponding word order.

Example: Reverse order may confuse the user: "Before
running programs, enter LOGON." Temporal order is clearer:
Enter LOGON before running programs."

Reference: BB 3.8.6.

-13 When listing textual material, or other data, each item should

start on a new line, i.e., the list should be a single column.

Exception: Multiple columns of data should be used where
that facilitates comparison of corresponding data sets, as
in tabular displays.

Exception: Multiple columns of data may be considered where
shortage of display space dictates a compact format.

Reference: BB 2.3.2, 2.9.2; EG 2.3.5.

-99-

2.1.1 Text (cont.)

-14 Lists within text should be ordered by some logical principle;
long lists, with more than seven items, should be ordered
alphabetically.

Reference: EG 2.3.1.

See also: 2.3-6.

-15 If a list is displayed in multiple columns, item ordering
should be vertical within each column, considered sequentially
from left to right.

-16 For material that must be remembered in a displayed statement
or list, the hardest items should be put at the beginning and
the easiest itec-a in the middle.

Reference: EG 3.3.3, 3.3.5.

-17 Material that need be recalled only for the next immediate user
action should be put at the end of a statement or list.

Reference: EG 3.3.5.

-18 Text displays and labels should be worded from the viewpoint of
the user, and not that of the system designer or programmer.

Reference: BE 2.2.2, 3.7.2; EG 3.4.5, 4.2.13.

-19 In text displays and labels, word usage should be consistent,
particularly for technical terms.

Comment: Standard terminology should be defined and
documented for reference by interface designers and by
users.

Reference: BE 2.2.2; EG 3.4.5, 4.2.13; MS 5.15.1.3.1.

-20 In text displays and labels, word usage should avoid jargon

terms.

Comment: When in doubt, pretest the meaning of words for
prospective users, to ensure that there is no ambiguity.

Reference: BE 2.2.2, 3.7.1, 3.7.4; PR 4.5.6.

See also: 1.4-16.

-100-

2.1.1 Text (cont.)

-21 Wording of text and labels should be consistent from one
display to another.

Example: The title of a display should be identical to the
menu option used to request the display.

Reference: BB 3.7.3.

-22 In text display and labels, use distinct words rather than
ccntractions or combined forms, especially in phrases involving
negation.

Example: Use "will not" rather than "won' t", "not complete"
rather than "incomplete".

Comment: This practice will help the user understand the
sense of the message.

Reference: BB 3.1.4; EG 2.2.15.

-23 In text display and labels, complete words should be used in
preference to abbreviations.

Exception: Abbreviations may be displayed if they are
significantly shorter, save needed space, and will be
understood by the prospective users.

Exception: When abbreviations are required (or useful) for
data entry, then corresponding use of those abbreviations in
data display may help a user learn them for data entry.

Reference: BB 3.1.1; EG 4.1.3; MS 5.15.1.3.2.

-24 In text display and labels, when words are abbreviated, the
designer should ensure that abbreviations are consistent in
form, and that abbreviations of different words are

distinguishable.

Reference: BB 3.1, 3.1.2; EG 4.1.3; MS 5.15.1.3.3;
PR 4.5.6.

See also: 1.0-14 thru 1.0-18.

-25 If an abbreviation deviates from the consistent form, it should
be specially marked whenever it is displayed.

Reference: Moses and Ehrenreich, 1981.

-101-

2.1.1 Text (cont.)

-26 When abbreviations are used, a dictionary of abbreviations
should be available for on-line user reference.

Reference: BB 3.1.3.

-27 In text display arnd labels, abbreviations and acronyms should
not include punctuation.

Example: Use "USAF" instead of "U.S.A.F."

Exception: Punctuation should be retained when needed for
clarity, e.g., "4-in, front dimension" rather than "4 in
front dimension".

Reference: BB 2.3.4; EG 2.2.14.

2.1.2 Data Forms

-1 When data items are displayed in a distributed format, each
field should have an associated label to identify it.

Comment: Do not assume that the user can Identify

individual data fields because of past familiarity. Context
may play a significant role: 617-271-4768 might be
recognized as a telephone number if seen in a telephone
directory, but might not be recognized as such in an
unlabeled display.

Reference: BB 2.8.7; EG 2.2.16; HS 5.15.4.9.1.

-2 The field label should be a descriptive title, phrase or word,
positioned adjacent to (above, or to the left of) a displayed
item, or group of items.

Comment: Labels should be worded carefully to assist a new
user in scanning the display and assimilating information
quickly.

Comment: Labels may be worded as a heading or title
reflecting the question for which the user seeks an answer
in the data that follow.

Reference: BB 2.9.1; EG 3.2, 3.2.4; MS 5.15.2.10.

-102-

2.1.2 Data Forms (cont.)

-3 Field labels should be distinctive from one another in wording,
to aid user discrimination.

Reference: BB 3.5; EG 3.2.3; MS 5.15.2.10.c.

-4 Consistent grammatical construction should be used for labels,

and for items in a list.

Example: Do not use single words or phrases for some items
and short sentences for others.

Reference: BB 3.8.4.

-5 Labels should be distinctive in format/positioning to help
distinguish them from displayed data and other types of
displayed material (e.g., error messages).

Reference: EG 3.2.3; MS 5.15.2.10.a.

-6 Labels and their associated data fields should be separated by
at least one space in the display.

Reference: BB 2.9.5; EG 2.3.8.

-7 An option should be provided to highlight labels for a new
user, or to dim labels for an experienced user.

Reference: EG 3.2; MS 5.15.2.10.b.

See also: 1.4-22.

-8 In data forms, labels and data fields should be consistently
formatted, and aligned to minimize search time by the user.

Example: In a numbered list, vertically formatted, the data
items should start in a fixed column position on the
display.

Reference: EG 2.3.7, 2.3.9.

-9 The units of measurement for displayed data should be included
either in the label or as part of each data item.

Reference: BB 2.8.8.

-103-

-. II I -

2.1.2 Data Forms (cont.)

-10 The ordering and layout of corresponding data fields should be
consistent from one display to another.

Reference: BB 2.8.3.

-11 The detailed internal format of frequently used data fields
should be consistent from one display to another.

Example: Telephone numbers should be consistently
hyphenated, as 213-394-1811.

Example: Time records might be consistently formatted with
colons, as HH:MM:SS, or HI:HM, or MM:SS.S, whatever is
appropriate.

Example: Date records might be consistently formatted with
slashes, as MM/DD/YY.

Comment: The convention chosen should be that familiar to
the prospective users. For European users, the formatting
of telephone numbers and of dates is customarily different
than suggested in the examples above. For military users,
date/time data are frequently combined in a familiar special
format. For many user groups, time records are kept on a
24-hour clock, which should be acknowledged in display
formatting.

Reference: EG 2.2.17; MS 5.15.1.3.4.

-12 Long strings of arbitrary alphanumeric characters should be
displayed in groups of three or four separated by a blank.

Exception: Words should, of course, be displayed intact,
whatever their length.

Comment: Hyphens may be used instead of blanks where that
is customary. Slashes are less preferred for separating
groups, since they are more easily confused with
alphanumerics.

Comment: Grouping should follow convention where a common
usage has been established, as in the NNN-NN-NNNN of social
security numbers.

Reference: BB 2.4.1; EG 2.2.2; MS 5.15.4.9.a.

-104-

2.1.3 Tables

-1 In tabular displays, columns and rows should be labeled
following the same guidelines proposed for labeling the fields
of data forms.

Reference: BB 2.8.7.

-2 In tabular displays, the units of displayed data should be
included in the column labels.

Reference: BB 2.8.8.

-3 Columns of numeric data should be displayed right-justified, or
justified with respect to a fixed decimal point.

Reference: BB 2.4.2, 2.4.3; EG 2.3.9; MS 5.15.4.9.d;

PR 4.8.10, 4.10.6.

See also: 1.5-6.

-4 Lists of data should be vertically aligned with left
justification to permit rapid scanning; indentation can be used
to indicate subordinate elements in hierarchic lists.

Exception: Numbers should be right-justified.

Exception: A short list, of just 4-5 items may be displayed
horizontally on a single line, in the interests of compact
display format, if that is done consistently.

Reference: BB 2.3.1; EG 2.2.8, 2.2.11; MS 5.15.4.9.d,
5.15.4.9.e.

-5 Data lists should be organized in some recognizable order,
whenever feasible, to facilitate scanning and assimilation.

Example: Dates may be ordered chronologically, names
alphabetically.

Reference: EG 2.2.3, 2.3.1; MS 5.15.4.9.b.

-6 When listed data are labeled by number, letter, etc., the
format chosen should be different than that used for selectable
control options.

*Reference: EG 2.2.7.

See also: 3.1.3-12.

-105-

2.1.3 Tables (cont.)

-7 When listed items are labeled by number, the numbering should

start with "1", and not "0".

Coment: In counting, people start with "one"; in
measuring, start with "zero".

Reference: EG 2.2.6.

-8 When data are displayed in more than one column, the columns
should be separated by at least 3-4 spaces if right-justified,
and by at least 5 spaces otherwise.

Reference: EG 2.3.6.

-9 Column spacing should be consistent from one display to

another.

Reference: BB 2.8.3.

-10 When tables are used for referencing purposes, such as an
index, the indexed material should be displayed in the left
column, the material most relevant for user response in the
next adjacent column, and associated but less significant
material in columns further to the right.

Reference: Hamill, 1980.

-11 Items that must be compared on a character-by-character basis

should be displayed with one directly above the other.

Reference: MS 5.15.4.6.2.d.

2.1.4 Graphics

-1 When users must scan and compare sets of data quickly, items
should be displayed in an ordered graphic format, with backup
display of raw data available as a user-selected option.

Commnent: People cannot readily assimilate and compare
detailed sets of raw data.

Reference: EG 2.2.9; MS 5.15.4.9.f.

-106-

2.1.4 Graphics (cont.)

-2 Graphic displays should be used, rather than alphanumeric, when
a user must monitor changing data in any critical task
involving qualitative distinction between normal and abnormal
conditions.

Comment: It is preferable, of course, to program the
computer to handle data monitoring, where that is feasible,
and signal detected abnormalities to the user's attention.

Reference: Hanson, Payne, Shiveley and Kantowitz, 1981;
Tullis, 1981.

-3 Graphic symbols should be standardized in meaning within a
system, and among systems having similar operational
requirements.

Reference: MS 5.15.2.6.

2.1.5 Combination

-1 When tables and/or graphics are combined with text, each figure
should be placed immediately following its first reference in
the text.

Comment: People may not look at a figure if it is displayed
in a location separated from its reference.

Reference: Whalley and Fleming, 1975.

2.2 Data Selection

*-1 When the user participates in selection of data for display,
each display should have a unique identifying label, an
alphanumeric code or abbreviation that can facilitate display

* requests by the user.

Comment: The display identification label should be short
enough (3-7 characters) or meaningful enough to be
remembered easily. Where flexibility is desired, it may be
good practice to let each user assign names to the
particular sets of data that constitute commonly used
displays.

Reference: BB 2.1.1, 2.2.3.

-107-

2.2 Data Selection (cant.)

-2 The identifying label used for display selection should be
displayed prominently in a consistent location.

Comment: The top left corner of the display is recommended
for this purpose.

Reference: BB 2.2.3.

2.3 Data Aggregation

-1 Grouped data should be arranged in the display with consistent
placement of items, so that user detection of similarities,
differences, trends and relationships is facilitated.

Example:

Cost Output
Actual Predicted Difference Actual Predicted Difference
947 901 +46 83 82 + 1
721 777 -56 57 54 + 3
475 471 + 4 91 95 - 4

Reference: BB 2.8.6; Tullis, 1981.

-2 Displayed data should be grouped by some logical principle,
such as sequence of use, where the spatial (or temporal) order
is that in which data items are usually encountered.

Example: Data in an electronic display should match the
order of items in an associated paper data form.

Reference: BB 2.8.1.

See also: 1.4-23, 1.4-24, 1.4-25.

-3 Displayed data should be grouped by some logical principle,
such as by function, where data items associated with a
particular question or purpose located adjacent to one another
in the display.

Reference: BB 2.8.1; Tullis, 1981.

-108-

2.3 Data Aggregation (cant.)

-4 Displayed data should be grouped by some logical principle,
such as importance, where data items providing the most
significant information, and/or requiring immediate response,
are grouped at the top of the display.A

Reference: BB 2.8.1; Tullis, 1981.

-5 Displayed data should be grouped by some logical principle,
such as frequency, where the most frequently used data items
are presented at the top of the display.

Comment: Principles of data grouping also apply to the
display/listing of control options.

Comment: These principles for data grouping in display
formatting are essentially the same as those recommended for
display/control layout in equipment design.

Reference: BB 2.8.1.

See also: 3.1.3-13.

-6 When there is no appropriate logic for grouping data by
sequence, function, frequency or importance, some other
principle should be adopted, such as alphabetical or
chronological grouping.

Reference: BB 2.8.2.

See also: 2.1.1-14.

-109-

2.4 Display Generation

-1 System response to simple requests for data display should take
no more than 0.5-1.0 second.

Example: This response time should apply when the user
requests the next page of a multi-page display, or when a
display begins to move in response to a scrolling request.

Comment: Responses to requests for new displays may take
somewhat longer, perhaps 2-10 seconds, particularly if the
user perceives such a request to involve more complicated
operations, such as accessing different files, transforming
data, etc.

Reference: EG Table 2.

-2 When displayed data are of potential long-term interest, there
should be an easy means for the user to request local printing
of a hard copy, within security restraints.

Comment: USI design should not require the user to rely on
memory. Optional printout permits the user to record data
from one display to compare with another, and so deal with
situations where the system designer has not anticipated the
need for such comparison.

Comment: The user should not have to take notes or
transcribe displayed data manually. That practice under-
utilizes the data handling potential of the computer, and
risks transcription errors by the user.

Reference: BB 1.7; EG 4.2.14; MS 5.15.4.8; PR 4.10.1.

-3 The contents of a display should not change as a result of a

user request for printout.

Reference: EG 4.2.14; MS 5.15.4.8.

-110-

2.5 Display Partitioning-

-1 A consistent organization for the location of various display
features should be adopted as a standard format to be used,
insofar as possible, for all displays.

Example: One location might be used consistently for a
display title, another area might be reserved for data
output by the computer, and other areas dedicated to display
of control options, instructions, error messages, and user

command entry.

Comment: Consistent display formats are needed to establish
and preserve user orientation. There is no fixed display
format that is optimum for all data handling applications,
which will vary in their requirements. However, once a
suitable format has been devised, it should be maintained as
a pattern to ensure consistent design of other displays.

Reference: BB 2.1, 2.8.4; EG 2.3, 2.3.3; MS 5.15.4.6.1.d.

-2 Means should be devised to make established display formats
clearly perceptible to the user.

Example: Different display areas, or "windows", can be
sep-rated by spacing (where space permits); outlining can
als be used to separate different areas, so that displayed
data are distinct from control options, instructions, etc.

Reference: BB 2.8.5; EG 2.3; MS 5.15.4.6.2.

-3 Established display formats should be changed only as necessary
f to distinguish one task or activity from another.

Comment: The objective is to develop display formats that
are consistent with accepted usage and existing user habits.

Reference: EG 2.2.5.

-4 The body of the display, when used for data output, should be
formatted to present data coherently, and usually should not be
partitioned into many small windows.

Reference: EG 2.3.2.

2.5 Display Partitioning (cont.)

-5 Every display should begin with a title or header, describing
briefly the contents or purpose of the display; the title
should be separated by one blank line from the body of the
display.

Reference: BB 2.1.1, Table 1; PR 4.5.2.

-6 The last several lines at the bottom of every display should be
reserved for status and error messages, prompts and command
entry.

Comment: Assuming that the display is mounted physically
above the keyboard, which is the customary placement, the
user can look back and forth from keyboard to display more
easily when prompts and entry area are at the bottom of the
display.

Reference: BB 6.1.2; PR 4.5.3.

*-112-

2.6 Display Density

-1 Ideally, each display should provide the user all of the
information needed at that point in the transaction sequence.

Example: Header information should be retained, or
re-generated, when paging /scrolling data tables.

Comment: The user should not have to remember information
from one display to the next.

Reference: BB 4.3.4; EG 2.3.14, 2.3.15.

See also: 2.0-1, 2.8-1.

-2 Ideally, each display should provide the user only the
information essential at that point in the transaction
sequence, and not be overloaded with extraneous data.

Comment: Extraneous data will prevent or slow user
assimilation of needed information. Where user information
requirements cannot be accurately determined in advance of
interface design, and/or are expected to be variable,
on-line user options should be provided for data selection,
display coverage and suppression.

Reference: BB 2.7, 2.8.10; EG 3.1.4; MS 5.15.2.3; Tullis,

1981.

See also: 2.0-1.

-3 For simple user-system dialogues, each line of a display should
provide a single item of information.

Reference: PR 4.10.5.

-113-

-- . . . I - -

2.7 Display Coding

-1 Important items requiring user attention should be highlighted
on the display with some form of auxiliary coding, particularly
when they appear infrequently.

Example: Such items might include recently changed data, or
data discrepant exceeding acceptable limits or discrepant
with some other defined criteria.

Comment: Position coding may suffice, i.e., always
displaying important items in a particular location, as when
an error message appears in a space otherwise left blank,
but auxiliary codes may be needed as well.

Reference: EQ 2.1.3, 2.3.12; MS 5.15.4.6.1.

-2 Display coding should also be considered for applications where
the user must distinguish rapidly among different categories of
displayed items, particularly when those items are distributed
in an irregular way on the display.

-3 Alphanumeric characters can be used in effectively unlimited
combinations, and should be considered for auxiliary coding in
display applications where basic data presentation is not
already alphanumeric (e.g., graphics).

Reference: EG Table 1.

-4 When using alphanumeric codes, a consistent convention should
be adopted that all letters shall either be upper case or else
lower case.

Comment: Computer logic should not distinguish between
upper and lower case in user entry of codes.

Reference: BB 2.3.3.

-5 When codes combine letters and numbers, characters of each type
should be grouped together rather than interspersed.

Exampl;: Letter-letter-number ("HNS") will be read and
remembered more accurately than letter-number-letter
("H5W") .

Comment: Unfortunately, there are common instances in which
this rule has been overlooked, such as the coding of English
and Canadian postal zones.

Reference: BB 2.5.1.

-114-

2.7 Display Coding (cont.)

-6 Meaningful codes should be adopted in preference to arbitrary
codes.

Example: A three-letter mnemonic code (DIR = directory) is
easier to remember than a three-digit numeric code.

Reference: BB 3.6.2.

-7 Display (and entry) codes should be assigned so as to conform
with population stereotypes, accepted abbreviations, and user
expectations.

Example: Use M for "male", F for "female", rather than
arbitrary digits 1 and 2. In color coding, use red for
danger.

Reference: BB 2.3.5.

-8 When codes are assigned special meaning in a display, a

definition should be provided at the bottom of the display.

Example: The legend on a map is a common example.

Comment: The definition should replicate the code, i.e.,
display the symbol, line width, etc., being defined. For a
color code, each definition should be displayed in the

appropriate color, e.g., "RED = hostile" in red.

Reference: BB 7.6.1.

-9 When arbitrary codes must be remembered by the user, they
should be no longer than 4-5 characters.

Comment: When a code is meaningful, such as a mnemonic
abbreviation or a word, it can be longer.

Reference: BB 2.5.2.

-115-

2.7 Display Coding (cont.)

-10 Symbols, and other codes as well, should be assigned to have
consistent meanings from one display to another.

Comment: When coding is not consistent, the user's task of
display interpretation may be made more difficult than if no

auxiliary coding were used at all.

Reference: BB 3.6.1, 7.6.2.

See also: 2.1.1-24.

-11 Special symbols, such as asterisks, arrows, etc., should be
considered for drawing attention to selected items in
alphanumeric displays.

Comment: Symbols chosen for such an "alerting" purpose
should not be used for other purposes in the display.

-12 When a special symbol is used to mark a word, it should be
separated from the beginning of the word by a space.

Comment: A symbol immediately adjacent to the beginning of
a word will impair legibility.

Reference: Noyes, 1980.

-13 Geometric shapes should be considered for discriminating
different categories of data on graphic displays.

Comment: Approximately 15 different shapes can be
distinguished readily. If that "alphabet" is too small, it
may be possible to use component shapes in combination, as
in some military symbol codes.

Reference: EG Table 1.

-14 When shape coding is used, the assignment of codes should be
consistent for all displays, and based upon an established
standard.

Comment: Although shape codes can often be mnemonic in
form, their interpretation will generally rely on learned
association as well as immediate perception. Existing user
standards must be taken into account by the display
designer.

Reference: MS 5.15.4.6.1.e.

* -116-

2.7 Display Coding (cont.)

-15 A special form of shape coding, using lines of varying length,
should be considered for applications involving spatial
categorization in a single dimension.

Example: The length of a displayed vector might be used to
indicate distance or speed.

Comment: Perhaps four lengths can be reliably distinguished
in practical use. Long lines will add clutter to a display,
but may be useful in special applications.

Reference: EG Table 1.

-16 A special form of shape coding, using lines of varying
direction, should be considered for applications involving
spatial categorization in two dimensions.

Example: The angle of a displayed vector might be used to
indicate direction, i.e., heading or bearing.

Comment: Users can make fairly accurate estimates of angles

for lines displayed at ten-degree intervals.

Reference: Smith, 1962a.

-17 When a line is added simply to mark or emphasize a displayed
item, it should be placed under the designated item.

Comment: A consistent convention is needed to prevent
ambiguity in the coding of vertically arrayed items;
underlining is customary, and does not detract from word
legibility.

Comment: For words from the Roman alphabet, underlining
probably detracts from legibility less than overlining.

-18 Size coding, i.e., varying the size of displayed alphanumerics
and other symbols, should be considered only for applications
where displays are not crowded.

Comment: Perhaps as many as five sizes might be used for
data categorization, but two or three will probably prove
the practical limit except for printed displays.

Reference: EG Table 1; MS 5.15.4.6.1.e.

-117-

2.7 Display CodinS (cont.)

-19 When size coding is used, a larger symbol should be at least
1.5 times the height of the next smaller symbol.

Reference: MS 5.15.4.6.l.e.

-20 Differences in brightness of displayed symbols should be
considered for many display applications as a two-valued code.

Example: A data form might combine bright data items with
dim labels to facilitate display scanning.

Comment: Perhaps as many as four brightness levels might be
used, but at some risk of reduced legibility for the dimmer
items.

Reference: EG Table 1; MS 5.15.4.6.1.b.

-21 When a capability for brightness inversion is available, i.e.,
where bright characters on a dark background can be changed
under computer program control to dark on light (or vice
versa), this should be considered for use in highlighting
displayed items that require user attention.

Reference: PR 3.3.4.

* 1 -118-

2.7 Display Coding (cont.)

-22 Color coding should be considered for applications where the
user must distinguish rapidly among several categories of data,
particularly when data items are dispersed on the display.

Example: Different colors might be used effectively in a
position display to distinguish friendly, unknown and
hostile aircraft tracks, or to distinguish among aircraft in
different altitude zones.

Comment: Color is a good auxiliary code, where a
multi-color display capability is available. A color code
can be overlaid directly on alphanumerics and other symbols
without significantly obscuring them. Color coding permits
rapid scanning and perception of patterns and relationships
among dispersed data items.

Comment: Perhaps as many as 11 different colors might be
reliably distinguished, or even more for trained observers;
but as a practical matter it will prove safer to use no more
than five or six.

Reference: BB 7.2; EG Table 1; MS 5.15.4.6.1.f; Smith,
1963a; Smith and Thomas, 1964; Smith, Farquhar and Thomas,
1965.

-23 Color coding should be used conservatively, with relatively few
colors to designate critical categories of displayed data.

Comment: Arbitrary use of many colors may cause displays to
appear "busy" or cluttered, and may reduce the likelihood
that relevant color coding on other displays will be
interpreted appropriately and quickly by the user.

Reference: BB 7.1.

-24 Color coding should be applied as an additional aid to the user
on displays that have already been formatted as effectively as
possible in a single color.

Comment: Do not use color coding in an attempt to
compensate for poor display format; redesign the display
instead.

Reference: BB 7.3.

-119-

.,-i.-

2.7 Display Coding (cont.)

-25 When color coding is used, it should be redundant with some
other feature in data display, such as symbology.

Comment: Displayed data should provide necessary
information even when viewed at a monochromatic display
terminal, or hard-copy printout, or when viewed by a user
with defective color vision.

Reference: BB 7.4.

-26 When color coding is used, each color should represent only one

category of displayed data.

Comment: Color will prove the dominant coding dimension on
a display. If several different types of data are displayed
in red, say, they will have an unwanted visual coherence
that may hinder proper assimilation of information by the
user.

Reference: BB 7.6.1; Smith and Thomas, 1964.

-27 Color coding should be consistent with conventional

associations with particular colors.

Example: In a display of accounting data, negative numbers
might be shown as red, corresponding to the customary use of
red ink for that purpose.

Example: Red is associated with danger Cin our society),
and is an appropriate color for alarm conditions. Yellow is
associated with caution, and might be used for alerting
messages or to denote changed data. Green is associated
with normal "go ahead" conditions, and might be used for
routine data display. White is a color with neutral
association, which might be used for general highlighting.

Comment: Other associations can be learned by the user if
color coding is applied consistently.

* Reference: BB 7.7.1, 7.7.2, 7.7.3; MS 5.15.4.6.1.f.

-120-

2.7 Display Coding (cont.)

-28 The color blue should be used only for background features in a
display, and not for critical data.

Example: Blue might be used in shading background areas in
graphic displays, where its lower apparent brightness could
possibly be of benefit.

Comment: The human eye is not equally sensitive to all
colors, nor are its optics color-corrected. Blue symbols
appear dimmer thanx others, and are more difficult to focus.

Reference: BB 7.6, 7.7.5.

-29 Blink coding should be considered for applications where a
displayed item implies an urgent need for user attention.

Comment: Blinking symbols are effective, if used sparingly,
in calling the user's attention to displayed items of
unusual significance. Blinking characters may have somewhat
reduced legibility, and may cause visual fatigue with
over-use.

Comment: Perhaps as many as four levels might be
distinguished, but it will probably prove safer to use
blinking as a two-level code, i.e, blinking versus
non-blinking.

Reference: EG Table 1; MS 5.15.4 .6.1.a; Smith and Goodwin,
1971b; Smith and Goodwin, 1972.

See also: 2.7-30.

-30 When blink coding is used to mark a data item that must be
read, an extra symbol such as an asterisk should be added as a
blinking marker, rather than blinking the item itself.

Comment: This practice will draw attention to an item

without detracting from its legibility.

Reference: Smith and Goodwin, 1971b.

See also: 2.7-29.

-121-

2.7 Display Coding (cont.)

-31 When blink coding is used, the blink rate should be in the
range of 2-3 Hz, with a minimum duty cycle (ON interval) of 50
percent.

Comment: Although equal ON and OFF intervals are often
specified, an effective code can probably be provided even
when the OFF interval is considerably shorter than the ON
(perhaps a wink, rather than a blink), as in occulting
lights used for Navy signaling.

-32 Other perceptual dimensions that should be considered for
coding visual displays include line type (e.g., dashed versus
solid), line width ("baldness"), focus, and motion.

Comment: Perhaps 3-4 line types might be readily
distinguished, and 2-3 line widths. Only two levels of
focus are feasible, clear and blurred, with the risk that
blurred items will be illegible. Perhaps 2-10 degrees of
motion might be distinguished, in display applications where
motion is an appropriate and feasible means of coding.

Reference: EG 2.3.

-33 For auditory displays, distinctive sounds should be used to

code items requiring special user attention.

Example: A variety of signals might be available, including
sirens, bells, chimes, buzzers, and tones of different
frequency.

Comment: Tones may be presented in sequence to enlarge the

signal repertoire.

Reference: Smith and Goodwin, 1970.

-34 For auditory displays with voice output, different voices
shouald be considered for use in distinguishing different
categories of data.

Comment: At least two voices, male and female, could be
readily distinguished, and perhaps more dependig upon
fidelity of auditory output, and listening conditions.

Reference: Smith and Goodwin, 1970.

-122-

2.8 Display Coveraze

-1 Whenever possible, all data relevant to the user's current
transaction should be included in one display frame.

Comment: Do not rely on the user to remember data
accurately from one display to the next.

Reference: EG 3.4.4.

See also: 2.0-1, 2.6-1.

-2 When requested data exceeds the capacity of a single display
frame, the user should be provided easy means to move back and
forth among relevant displays, by paging or scrolling.

Example: Dedicated function keys might be provided for
paging/scrolling forward and back.

Comment: Paging/scrolling is acceptable when the user is
looking for a specific data item, but not when the user must
discern some relationship among separately displayed sets of
data.

Reference: BB 4.4.1, 4.4.2; EG 6.3.8; MS 5.15.4.9.j.

-3 When a list of numbered items exceeds one display frame, and
must be paged/scrolled for its continuation, items should be
numbered continuously in relation to the first item in the
first display.

Reference: EG 2.3.10.

-4 When a tabular display must be paged/scrolled for its
continuation, column headings and row labels should be
preserved in each viewed portion of the display.

-5 When lists or tables are of variable length, and may extend
beyond the limits of a single display frame, their continuation
and ending should be explicitly noted on the display.

Example: Incomplete lists might be marked "continued on
next page", or simply "continued". Concluding lists might
add a note "end of list".

Exception: Short lists whose conclusion is evident from the
display format need not be annotated in this way.

Reference: BB 2.9.6.

-123-

2.8 Display Coverage (cont.)

-6 When display output contains more than one page, the notation
page x of y" should appear on each display.

Comment: A recommended format is to put this note
immediately to the right of the display title. With such a
consistent location, the page note might be displayed in
dimmer characters. Leading zeros should not be used in the
display of page numbers.

Reference: PR 4.5.10, 4.10.4.

-7 When scrolling is used, a consistent orientation should be
adopted in USI design as to whether 1) data are conceived to
move behind a fixed display window, commonly called
scrolling"; or 2) the display window is conceived to move over

Ia fixed array of data, here called "windowing'.

Comment: A user can adapt to either concept, if it is
maintained consistently. "Windowing" is the more natural
concept for inexperienced users, causing fewer errors, and
hence is the preferred option when other considerations are
equal.

Reference: BB 4.4.8; Bury, Boyle, Evey and Neal (in press).

-8 In applications where a cursor is moved freely within a frame
of displayed data, "windowing" should be selected rather than
"scrolling" as the conceptual basis of display movement.

Example: full-screen editing.

Comment: Since displayed data will be perceived as fixed
during cursor movement, considerations of joint compati-
bility suggest that displayed data remain conceptually fixed
during window "movement". Indeed, it may be possible to use
the same arrow-labeled keys to control both cursor movement
and "windowing".

Reference: Morrill and Davies, 1961.

-124-

- - -- -- ..-

2.8 Display Coverage (cont.)

-9 When a "windowing" orientation is maintained consistently, the
wording of scroll functions should refer to the display frame
(or window) and not to the displayed data.

Example: The command "Up 10" should mean that ten lines of
data will disappear from the bottom of the display, and ten
earlier lines will appear at the top.

-10 When a "scrolling" orientation is maintained consistently, the
wording of scroll functions should refer to the data being
displayed, and not to the display frame or window.

Example: "Roll up 5 lines" should mean that the top five
lines of data will disappear from the display, and five new
lines will appear at the bottom.

Reference: EG 2.3.16.

-11 When the user may be exposed to different systems adopting
different usage, any reference to scroll functions should avoid
wording that implies spatial orientation, and instead
consistently use functional terms such as "forward" and "back"
(or itnext" and "previous") to refer to movement within a
displayed data set.

Comment: In that event, control of scroll functions should
be implemented by keys marked with arrows, avoiding verbal
labels altogether.

2.9 Display Update

-1 In accord with operational requirements, the user should be
able to request automatic update (computer regeneration) of
displayed data, and control the update rate.

-2 Changing data values that the user must read accurately should
be updated only in a fixed position on the display, and no
faster than one per second.

Reference: MS 5.15.4.5.1.

-3 Changing data values that the user need read only approximately
to identify the general nature of data change should be updated
no faster than five per second.

Reference: MS 5.15.4.5.2.

-125-

2.9 Display Update (cont.)

-4 Graphic displays in which a user must visually integrate
changing patterns should be updated at a rate matching the
user's data handling abilities.

Comment: Slowly developing patterns may be seen more easily
with time compression, i.e., with rapid (and repetitive)
display of sequentially stored data frames. Fast changing
data may require time expansion, i.e., slowed motion, to
detect patterns.

Comment: Similar considerations may apply to auditory
displays, where speeding or slowing sound signals may aid
pattern recognition.

Reference: MS 5.15.4.5.3.

-5 When a display is automatically updated, the user should be
able to stop the process ("freeze", "stop action"~) at any
point, to examine changed data more deliberately.

Comment: For some applications, it may also prove helpful
if the user can step incrementally forward or back in the
time sequence, frame by frame.

Reference: MS 5.15.4.5.4.

-6 When an updated display is frozen, some appropriate label

should be added to remind the user of that status.

Reference: HS 5.15.4.5.5.

-7 When a display being updated in real time is frozen, the user
should be warned if some significant (but not displayed) change
is detected in the computer processing of new data.

Reference: MS 5.15.4.5.4.

-8 When a display being updated in real time Is frozen,' resumption
of display update should be at the current real-time point

unless otherwise specified by the user.

Comment: In some applications, a user might wish to resume
display update at the point of stoppage, and so display
change would thenceforth lag real-time data change. As a
general practice, however, s-ich an option risks confusion.

* Reference: MS 5.15.4.5.4.

-126-

2.10 Display Suppression

(no guidelines presently available)

2.11 Design Change

(no guidelines presently available)

-127-

APPENDIX D

DESIGN GUIDELINES FOR SEQUENCE CONTROL FUNCTIONS

Sequence control refers to the logic and means by which inputs
and outputs are linked to become coherent transactions, and which
govern the transitions from one transaction to the next. Techniques
of sequence control require explicit attention in USI design, and a
number of published guidelines bear on this topic.

A fundamental decision in USI design is selection of the
dialogue type~s) that will be used to implement sequence control.
Here dialogue refers to the sequence of transactions which mediate
user-system interaction. Ramsey and Atwood (1979, pp. 76-95)
identify eight general dialogue types:

question and answer
form filling
menu selection
function keys
command language
query language
natural language
interactive graphics

Various sub-categories can be identified, of course, as illustrated
by the many examples in Martin's book on the subject (1973).

USI design will often involve a mixture of two or more dialogue
types, since different dialogues are appropriate to different jobs
and different kinds of users. Recognition of appropriate dialogue
types at the outset of system development will facilitate USI design
and help ensure the effectiveness of future system operation.

The selection of dialogue types based on anticipated task
requirements and user skills seems straightforward, at least for
simple cases. Computer-initiated question-and-answer dialogues are
suited to routine data entry tasks, where data items are known and
their ordering can be constrained, and provides explicit prompting
for unskilled, occasional users. Form-filling dialogues permit
somewhat greater flexibility in data entry, but may require user
training. When data entries must be made in arbitrary order,
perhaps mixed with queries as in making airline reservations, for
example, then some mixture of function keys and coded command

* language will be required for effective operation, implying a
moderate to high level of user training.

-129-

RN U A MK Fu

From these examples, it would seem possible to judge for any
information handling task the types of dialogue that should prove
most suitable, and to indicate this judgment in the USI functional
capabilities checklist in specification of USI requirements.

One important aspect of dialogue choice is that different types
of dialogue imply differences in system response time for effective
operation. In a repetitive form-filling dialogue, for example, the
user may accept relatively slow computer processing of a completed
form. If the computer should take 'several seconds to respond, the
user probably can take that time to set one data sheet aside and
ready another. But several seconds delay in a menu selection
dialogue may prove intolerable, especially where the user must make
an extended sequence uf selections in order to accomplish a desired
end.

To categorize these differences, Table D-1 presents for each of
the eight general dialogue types identified above an estimate of the
implied requirement for user training and for system response time.
Cumulative experience and specific requirements of a particular task
may modify such estimates. But the general principle Illustrated
here, that one design choice implies others, must be taken into
account in USI specification.

Table D-1

Estimated Requirements of Different Dialogue Types

_______Required Required System
Dialogue Type User Training Response Time

Question and Answer Little/None Moderate

Form Filling Moderate/Little Slow

Menu Selection Little/None Very Fast

Function Keys High/Moderate Fast

Command Language High Fast

Query Language High/Moderate Moderate

Natural Language Moderate Fast

(potentially Little)

Interactive Graphics High Very Fast

-130-

Flexibility and context are important in sequence control as in
other aspects of USI design. Ideal flexibility would permit the
user to undertake whatever task or transaction he wishes, at any
time. Although this may not always prove feasible, the USI designer
should try to provide the maximum possible user control of the
on-line transaction sequence. As a simple example, suppose the user
is scanning a multi-page data display. He should be able to go
either forward or back at will. If the USI design only permits him
to step forward, so that he must cycle through the entire display
set to reach a previous page, that design is inefficient. The user
should also be able to interrupt display scanning at any point to
initiate some other transaction. Such simple flexibility is
relatively easy for the designer to achieve, and indeed is commonly
provided.

More difficult are transactions that involve potential change
to stored data. Here again the user will need flexibility in
sequence control, perhaps wishing to back up in a data entry
sequence to change previous items, or to cancel and restart the
sequence, or to abort the sequence altogether and escape to some
other task. The USI designer can provide such flexibility through
use of suspense files and other special programmed features. This
flexibility requires extra effort from the designer and programmer.
But that extra effort is made only once, and is a worthwhile
investment on behalf of future users who may interact with their
computer system for months or even years.

* In one respect, flexibility of sequence control has pitfalls.
Just as a user can make a mistake in data entry, so also can he make
a mistake in sequence control. The USI designer must try to
anticipate user errors and ensure that potentially irreversible
actions are difficult to take. In data entry tasks, for example,
when a user is satisfied with a set of data he should be obliged to
take some explicit action to ENTER it for computer processing. The
USI should be designed to protect the user from the consequences of
inadvertently destructive actions. Any large-scale erasure or
deletion of data, for example, should require some sort of explicit
user confirmation, being accomplished as a two-step process rather
than a single transaction. (This provides a software analogy to the
physical barriers sometimes used to protect critical hardware
controls from accidental activation.) Some well-designed systems go
a step further, and permit the user to reverse a mistaken action
already taken.

One form of flexibility frequently recommended is the provision
of alternate modes of sequence control for experienced and
inexperienced users. In a command-language dialogue, optional
guidance might be provided to prompt a beginner step by step in the

-131-

4

composition of commands, whereas an experienced user might enter a
complete command as a single complex input. Some such flexibility
in USI design is surely desirable -- to interpret halting, stepwise
control inputs, as well as fluent, coherent commands.

More generally, however, it may be desirable to include
redundant modes of sequence control in USI design, perhaps involving
combinations of different dialogue types. As an example, menu
selection might be incorporated to provide easy sequence control for
beginners, but every display frame might also be formatted to
include a standard field where an experienced user could enter
complete commands more efficiently. Examples of this approach have
been provided by Palme (1979).

Another way to provide flexibility in sequence control is
through specific tailoring of display formats. Consider, for
example, a dialogue type in which sequence control is exercised
through lightpen selection among displayed command options. For any
particular display frame it might be possible to display just three
or four options most likely to be selected by a user at that point
in the task sequence, plus a general purpose OPTIONS selection that
could be used to call out a display of other (less likely) commands.
Thus, on the first page of a two-page display set, one of the likely
commands would be NEXT PAGE; but on the second page that command
would be replaced by its more likely complement, PREV PAGE.

This approach illustrates two design ideas. The first comes
close to being a general rule for sequence control: make the user's
most frequent transactions the easiest to accomplish. The second
idea is the reliance on context to improve flexibility.

The importance of context in sequence control extends beyond
the example above, where likely control options are given
preferential display. Context can be used to shorten command inputs
during sequence control and still permit unambiguous interpretation.
In general, it will prove desirable to have the user rather than the
computer define the task context in which control inputs are to be
interpreted.

As an example, suppose that a user wishes to assign several
sorties of aircraft from a particular squadron to preplanned
missions. He should be able to specify the squadron and then expect
all subsequent commands to be applied to that squadron. Further, he
should be able to specify that he is making assignments and expect
that subsequent selections of aircraft/crews and missions will be
interpreted accordingly. If context can be used in this way, the
user can avoid repetitious control actions, which is just as
desirable as avoiding repetitious data entries.

-132-

A potential pitfall here is that the results of a particular
control action, if contingent on context, may vary from one time to
another. Thus aircraft selection in the context described above
would result in mission assignment, whereas aircraft selection in a
different context might result in unassignment, or allocation to
ready reserve, or commitment to maintenance status. Such
variability may prove confusing to the user. When the consequences
of control actions are contingent on context, then the USI designer
should ensure that the current context and its implied contingencies
are always displayed to the user. That will help provide needed
user guidance.

These general ideas concerning sequence control are reflected
in the specific design guidelines proposed in the following pages.

-133-

SEQUENCE CONTROL Objectives:

Minimized control actions by user
Low memory load on user
Consistency of control actions
Compatibility with user needs
Flexibility of sequence control

3.0 General

-1 Flexible means of sequence control should be provided so that
the user can accomplish necessary transactions involving data
entry, processing, retrieval and transmission, or can obtain
guidance as needed in connection with any transaction.

Example: In scanning a multi-page display the user should
be able to go forward or back at will; if USI design permits
only forward steps, so that the user must cycle through the
entire display series to reach a previous page, that design
is deficient.

Comment: Necessary transactions should be defined in task
analysis prior to software design.

Reference: PR 4.0.

-2 Control inputs should be simplified to the maximum extent
possible, particularly for real-time tasks requiring fast user
action, and should permit completion of a transaction sequence
with the minimum number of control inputs consistent with user
abilities.

Example: The user should be able to print a display
directly without having to take a series of other actions
first, such as calling for the display to be filed,
specifying a file name, then calling for a print of that
named file.

Example: For long, multi-page displays, it should be
possible to request a particular page directly, without
having to take repetitive PAGE FORWARD actions.

Comment: Shortcuts via direct commands should be provided
for experienced users, to by-pass intervening steps that
might provide a more easily learned sequence for beginners.
The computer should be programmed to handle intervening
steps automatically, informing the user what has been done
if that seems necessary.

Reference: BB 4.4.1, 4.5; MS 5.15.2.7.

-134-

3.0 General (cont.)

-3 The means of sequence control should be compatible with desired
ends; frequent or urgent control actions should be easy to
take, whereas potentially destructive control actions should be
made sufficiently difficult to require explicit user attention.

Comment: Perhaps "difficult" is the wrong word here. If a
destructive action is made different or distinctive in some
way, so that it will not be taken by mistake, then perhaps
it is not necessary that it be made difficult as well.

Reference: EG 4.0, 4.1.2.

-4 Sequence control should be compatible with user skills,
permitting simple step-by-step control actions for beginners,
and efficiently coded command entry by experienced users.

Comment: This will generally require a mix of dialogue
types.

See also: Section 3.1.

-5 In most on-line information handling systems, sequence control
should result from explicit user inputs rather than occur as an

automatic consequence of computer processing.

Example: The computer should not interrupt user data entry
to require immediate correction of any input error, but
instead should wait until the user signals completion of the
transaction.

Exception: Routine, repetitive transaction sequences in
which successful completion of one may lead automatically to
initiation of the next.

Exception: Automated process control applications where
emergency conditions may take precedence over current user
transactions.

Comment: In general, computer detection of problems with
current user inputs can be negotiated at the conclusion of a
transaction, before it is implemented. Computer detection

of other problems can be signaled by alarms or advisory

messages, so that the user can choose when to deal with

See also: 1.0-8, 1.1-5, 1.4-1.

-135-

*3.0 General (cont.)

-6 Although the user-system dialogue is necessarily limited by the
computer, software design should insofar as possible permit
initiative and control by the user; the USI designer should
anticipate all possible user actions and their consequences,
and should provide appropriate options in every case.

Comment: In particular, a dialogue should never reach a
dead end with no further action available to the user; if
the user makes an input inappropriate (or unrecognizable) to
current processing logic, the result should simply be an
advisory message indicating the nature of the problem and
the available options as to what can be done next.

Reference: PR 2.2.

-7 Whenever possible, control inputs should be self-paced,
depending upon the user's needs, attention span and time
available, rather than computer processing or external events.

Comment: When self-pacing does not seem feasible, the
general approach to task allocation and USI design should be
reconsidered.

See also: 1.0-6.

-8 The speed of computer response to user inputs should be
appropriate to the transaction involved; in general, the
response should be faster for those transactions perceived by
the user to be simple.

Example: Computer response to a predictable command, such
as NEXT PAGE, should be within 0.5-1.0 second; response to
other simple commands should be within 2.0 second; error
messages should be displayed within 2-4 second.

Reference: Miller, 1968.

-9 Control inputs by a user should not be delayed or paced by
delays in computer response.

Comment: It is recommended that control delays or lockouts

not exceed 20 milliseconds. In some applications, however,
longer delay may be tolerable, particularly if that has the
effect of reducing variability in computer response time.

Reference: MS 5.15.3.3.

* See also: 1.0-7.

-136-

Geneffuhra user~ inputs must be delayed pending completion of
computer processing, the keyboard should be automatically
locked until the user can begin a new transaction; keyboard
lock should be accompanied by disappearance of the cursor from
the display and (especially if infrequent) by some more
specific indicator such as an auditory signal.

Comment: Absence of a cursor is not in itself a sufficient
indicator of keyboard lockout. Auditory signals will be
particularly helpful to skilled touch typists, who may not
look at the display during a repetitive data transcription.

Comment: Following keyboard lockcut, computer readiness to
accept further inputs should be signaled to the user.

Comment: In some cases, it may be desirable to provide the
user with an auxiliary means of control input, such as a
special function key, to abort a transaction causing
extended keyboard lockout.

-11 When execution of a control input is delayed, the computer
should give the user some positive indication when processing
is subsequently completed, the outcome, and the implied need
for further user actions if any.

Reference: BB 4.3.1; MS 5.15.l.4.c.

-12 All control inputs made by a user should be acknowledged
unambiguously by the computer, either by their immediate
execution, or else by some immediate message indicating that
execution is in progress or deferred or that the control input
requires correctirn or confirmation.

Example: In particular, the absence of computer response is
not an acceptable means of indicating that a command is
being processed.

Comment: "Immediate" as used here is subject to
interpretation in relation to the response time requirements
of different dialogue types.

Reference: BB 4.3.2; EG 4.2.5; MS 5.15.3.2, 5.15.3.4.

See also: Section 3.1.

-137-

3.0 General (cont.)

-13 Computer responses to control inputs should generally consist
of changes in state or value of displayed elements affected by

the control action, in an expected or natural form.

Reference: MS 5.15.3.4.1.

-14 In data entry tasks where input is usually accomplished as a
single, discrete transaction, successful entry should be
signaled by a confirmation message without removing any visual
display of the entered data.

Comment: This follows the general recommendation for
sequence control that the user should leave one transaction
and choose the next by explicit action.

Reference: MS 5.15.1.2.7.d.

-15 In data entry tasks where input is repetitive, in a continuing
sequence of transactions, successful entry should be signaled
by regeneration of the data entry display, automatically
removing the just entered data in preparation for the next
entry.

Comment: This represents an exception to the general
principle of sequence control by explicit user choice, in
the interest of efficiency.

Comment: An explicit message confirming successful data
entry can be added in cases where that seems helpful.

Reference: EG 4.2.10.

-16 Sequence control actions should be consistent in form and
consequences throughout USI design; similar means should be
employed to accomplish similar ends, from one transaction to
the next, and from one task to another.

Comment: In particular, there should be some standard,
consistent routine for the user to initiate and complete
task sequences.

-138-

3.0 General (cont.)

-- If the consequences of a given control action will differ
depending upon context established by a prior action, then some
appropriate means of context definition should be displayed in
advance to the user.

Comment: Do not rely on the user always to remember prior
actions, nor to understand their current implications.

-18 The design of linked transaction sequences should be based on
task analysis, i.e., should represent a logical unit or subtask
from the viewpoint of the user.

Comment: A logical unit to the user is not necessarily the
same as a logical unit of the computer software that
mediates the transaction sequence.

Reference: PR 5.1.

-19 Displays should be designed so that features relevant to
sequence control are distinctive in position and/or format.

Comment: Relevant features include displayed options, any
command entry area used to indicate control actions,
prompts, advisory messages, and othe- displayed items

(titles, time signals, etc.) whose changes signal the
results of control actions.

-20 When two or more users must interact with the system
simultaneously, control inputs by one should not interfere with
those of another.

Comment: This requires careful USI design for applications
where joint, coordinated actions must be made by a group of
users.

Reference: MS 5.15.2.5.

-21 In instructional material, and in on-line messages to the user,
consistent terminology should be adopted to refer to control
inputs.

Example: Various words and phrases might be used, such as
"fcontrol input", "commsand entry", "instruction", "request",
"function call", etc. The practice adopted in these
guidelines is to call general sequence control actions
"control inputs" and to call control inputs keyed onto the
display "command entries".

-139-

3.1 Dialogue Type

-1 Choice of dialogue type(s) and design of sequence control
dialogue should take into account user characteristics and task
requirements.

Example: When data entries must be made in arbitrary order,
perhaps mixed with queries (as in making flight
reservations), then some mixture of function keys and coded
command entries will be required for effective operation,
implying a moderately high level of user training.

Comment: The simple dictum is "Know the user". If user
characteristics are variable, which is often the case, then
a variety of dialogue types should be provided.

-2 The speed of computer response to user inputs should be
appropriate to the type of dialogue; in general,.the response
to menu selections, function keys, and most inputs during
graphic interaction should be immediate.

Comment: It is generally thought that maximum acceptable
computer response for menu selection by lightpen is 1.0
second; for key activation is 0.1 second; for cursor
positioning by lightpen (as in graphic line drawing) 0.1
second.

Comment: If computer response time will be slow, other
dialogue types should be considered by the USI designer.

Reference: Miller, 1968.

3.1.1 Question and Answer

-1 Question-and-answer dialogue should be considered primarily for
routine data entry tasks, where data items are known and their
ordering can be constrained, where the user will have little or
no training, and where computer response is expected to be
moderately fast.

Comment: Brief question-and-answer sequences can be used to
supplement other dialogue types for special purposes, such
as for log-on routines, or for resolving ambiguous control
inputs or data entries.

-140-

3.1.2 Form Filling

-1 Form-filling dialogue should be considered when some
flexibility in data entry is needed, such as the inclusion of
optional as well as required items, where users will have
moderate training, and/or where computer response may be slow.

See also: Section 1.4.

3.1.3 M-inu Selection

-1 Menu selection should be considered for tasks such as
scheduling and monitoring that involve little entry of
arbitrary data, where users may have relatively little
training, and where computer response is expected to be fast.

Comment: Menu selection is, of course, a generally good
means of mediating control inputs by untrained users, in
conjunction with other dialogue types for other task
requirements.

Comment: When display output is slow, as for a printing
terminal, or for an electronic display constrained by a
low-bandwidtlh channel, it may be tiresome for a user to wait
for display of menu options.

-2 Each menu display should require just one selection by the
user.

Comment: Beginning users will be confused by any more
complicated "Chinese m~enu" requiring one choice from Column
A, two from Column B, etc.

Reference: PR 4.6.5.

-3 When menu selection is the primary means of sequence control,
and especially if extensive lists of control options must be
displayed, then selection should be accomplished by direct
pointing (e.g., by lightpen).

See also: 1.1-14.

-141-

3.1.3 Menu Selection (cont.)

-4 If menu selection is handled by pointing, dual activation

should be provided, the first action to designate (position a
cursor on) the selected option, followed by a separate action
to make an explicit control input.

Comment: The two actions should be compatible in their
design implementation. If the cursor is positioned by
keying, then an ENTER key should be used to signal control
input. If the cursor is positioned by lightpen, then a
dual-action "trigger" on the lightpen should be provided for
positioning and control inputs.

Comment: This recommendation assumes that accuracy in
selection of control inputs is more important than speed.
In some applications that may not be true. USI design will
involve a trade-off considering the criticality of wrong
inputs, ease of recovery from wrong inputs, and user
convenience in making selections.

See also: 1.0-8, 3.0-5.

-5 When menu selection is a secondary (occasional) means of
control input, and/or only short option lists are needed, then
selection may be accomplished by keyed entry of corresponding
codes, or by other means such as programmed multi-function keys
labeled in the display margin.

-6 When menu selection is accomplished by code, that code should
be keyed into a standard command entry area (window) in a fixed
location on all displays.

Example: In a customary terminal -ionfiguration, with the
display located above the keyboard, command entry should be
in the bottom line of the display.

Comment: In effect, the command entry area should be

positioned to minimize user head/eye movement between the

display and the keyboard.

Comment: For experienced users, coded menu selections can
* be keyed in a standard area identified only by its

consistent location and use; if the system is designed
primarily for novice users, that entry area should be given
an appropriate label such as ENTER CHOICE HERE:

* I Reference: MS 5.15.4.6.1.d; 11R 4.6.3.

-142-

3.1.3 Menu Selection (cont.)

-7 Menu options should be worded so as to permit direct selection
of any option as an acceptable control input, either by
pointing or by code entry; options should not be worded so as
to imply a question requiring a YES/NO answer.

Example: +PRINT is acceptable; PRINT? is not.

Reference: PR 4.6.8.

-8 When control inputs will be selected from a discrete set of
options, then those options should be displayed at the time of
selection.

Reference: MS 5.15.3.5.

-9 If menu selection is used in conjunction with Cas an
alternative to) command language, then displayed control
options should be worded in terms of recognized commands or
command elements.

Comment: Where appropriate, sequences of menu selections
should be displayed in an accumulator until the user signals
entry of a completely composed command.

Coumment: This practice will speed the transition for a
novice user, relying initially on sequential menu selection,
to become an experienced user composing coherent commands
without such aid.

-143-

3.1.3 Mlenu Selection (cont.)

-10 If menu selections must be made by keyed codes, options should
be coded by the initial letter (or letters) of their displayed
labels, rather than by more arbitrary numeric codes.

Exception: Options might be numbered when a logical order
or sequence is implied.

Exception: When option selection is from a long list, line
number might be an acceptable alternative to letter codes.

Comment: Letters are easier than numbers for touch typists;
options can be re-ordered on a menu without changing letter
codes; it is easier to memorize meaningful names than
numbers, and so letter codes can facilitate a potential
transition from menu selection to command language when
those two dialogue types are used together.

Comment: USI designers should not create unnatural option
labels just to ensure that the initial letter of each will
be different. There must be some natural difference among
option names, and a two- or three-letter code can probably
be devised to emphasize that difference.

Reference: Palne, 1979. (Note contrary views, favoring
number codes, in BB 2.9.3; EG 2.2.7; PR 4.6.2.)

-11 If letter codes are used to make menu selections, then insofar
as possible those codes should be used consistently in
designating options at different steps in a transaction
sequence.

Example: The same action should not be given different
names and hence different codes (F = FORWARD and N = NEXT);
the same code should not be given to different actions (Q
QUIT and Q = QUEUE).

-12 If menu options are included in a display intended also for
data review and/or data entry, which is often a practical
design approach, the labels for control input should be located
consistently in the display and should incorporate some
consistent distinguishing feature to indicate their special
function.

Example: All control options might be displayed beginning
with a special symbol, such as a plus sign (+FORWARD, +-BACK,
etc.)

See also: 2.1.3-6.

-144-

3.1.3 Menu Selection Ccont.)

-13 Displayed menu options should be listed in a logical order; if
no logical structure is apparent, then options should be

displayed in order of their expected frequency of use, with the

most frequent listed first.

Comment: If the first menu option is always the most likely
choice, then for some applications it may be useful for
efficiency of sequence control if a null input defaults to
the first option. If that is done, it should be done
consistently.

Reference: BB 2.9.4; PR 4.6.6; Palme, 1979.

See also: 2.3-5.

-14 Displayed menu lists should be formatted to indicate the
hierarchic structure of logically related groups of options,
rather than as an undifferentiated string of alternatives.

Comment: When logical grouping requires a trade-off againstI
expected frequency of use, USI designers should resolve that
trade-off consistently throughout the menu structure.

-15 If menu options are grouped in logical subunits, those groups
should be displayed in order of their expected frequency of
use.

Reference: PR 4.6.6.

-16 If menu options are grouped in logical subunits, each group
should be given a descriptive label that is distinctive in
format from the labels of the control options themselves.

Comment: Although this practice might sometimes seem to
waste display space, it will help provide user guidance;
moreover, careful selection of group labels may serve to
reduce the number of words needed for individual option

labels.

Reference: MS 5.15.2.10.

-145-

3.1.3 Menu Selection (cont.)

-17 A displayed menu should include only options appropriate at
that particular step in a transaction sequence, and for the
particular user.

Example: Displayed file directories should contain only
those files actually available to the user.

Example: An UPDATE option should be offered only if the
user has update rights for the particular data file being
used.

Exception: Menu displays for a system still under
development might indicate future options not yet
implemented, but those options should be specially
designated in some way.

Comment: A seeming exception might be a process control
display in which current values of a number of variables
must be monitored (i.e., must be displayed continuously),
and where supplementary data (e.g., trend analysis) can be
called out for some variables but not others. Here some
means must be found to signal the user which variables can
be selected and which not.

-18 Insofar as possible a displayed menu should include all options
appropriate at that particular step in a transaction sequence.

Exception: A familiar set of general control options always
available may be omitted from individual displays, and
accessed as needed by a +OPTIONS input.

See also: Section 3.2.

I

3.1.3 Menu Selection (cont.)

-19 When option selections must be made from a long list, and not
all options can be displayed at once, a hierarchic sequence of
menu selections should be provided rather than one long
multi-page menu.

Exception: Where a long list is already structured for
other purposes, such as a list of customers, a parts
inventory, a file directory, etc., it might be reasonable to
require the user to scan multiple display pages to find a
particular item. Even in such cases, however, an imposed
structure for sequential access may prove more efficient.

Comment: Beginning users may prefer a menu permitting a
single choice from all available options, when those can be
displayed on one page. Experienced users, however, may
perform faster with a sequence of choices from a hierarchy
of separately displayed sub-menus.

Comment: A single menu that extends for more than one page
will hinder learning and use. The USI designer can usually
devise some means of logical segmentation to permit saveral
sequential selections among few alternatives instead of a
single difficult selection among many.

Reference: Dray, Ogden and Vestewig, 1981.

-20 When the user must step through a sequence of menus to make a
selection, the hierarchic structure should be designed, insofar
as possible within the constraints of display space, to
minimize the number of steps required.

Comment: This represents a trade-off against the previous
guideline. The number of hierarchic levels should be
minimized, but not at the expense of display crowding.

Comment: When space permits, it may be desirable to display
further (lower) choices in the hierarchic structure, to give
the user a deeper view of the structure and permit direct
selection of specific lower-level options.

Reference: MS 5.15.2.2.a; Miller, 1981.

-147-

3.1.3 Menu Selection (cont.)

-21 When hierarchic menus are used, they should be designed to
permit the user immediate access to critical or frequently
selected options.

Reference: MS 5.15.2.2.b.

-22 When hierarchic menus are used, the user should be given some
displayed indication of current position in the menu structure.

Comment: One possible approach would be to recapitulate
prior (higher) menu selections on the display. If routine
display of path information seems to clutter menu formats,
then such information might be provided only as an optional
display at user request.

Reference: MS 5.15.2.2.c.

-23 When hierarchic menus are used, care should be taken to ensure
consistent display formats at each level.

Reference: MS 5.15.2.2.d.

-24 When hierarchic menus are used, a single key action should
permi t the user to return to the next higher level.

Reference: BB 4.4.4.

-25 Menus provided in different displays should be designed so that

option lists are consistent in terminology and ordering.

Example: If +PRINT is the last option in one menu, the same
print option should not be worded +COPY at the beginning of
another menu.

-26 When a control option has been selected and entered, if there
is no immediately observable natural response some other form
of acknowledgment should be displayed.

Comment: An explicit message might be provided. In some
applications, however, it may suffice simply to highlight
the selected option label (e.g., by brightening or inverse
video) when that would provide an unambiguous computer
acknowledgment.

Reference: MS 5.15.1.4.a.

See also: 1.1-6.

-148-

3.1.3 Menu Selection (cont.)

-27 Experienced users should be provided means to by-pass a series
of menu selections and make an equivalent command entry
directly.

Reference: BB 6.7.

See also: 3.0-2.

-28 When a user can anticipate menu selections before they are
presented, means should be provided to enter several "stacked"
selections at one time.

Comment: If necessary, stacked sequential entries might be
separated by a special character, such as a slash, comma or
semicolon. It would be preferable, however, if they could
simply be strung together without special punctuation.

Reference: BE 6.8.

3.1.4 Function Keys

-1 Function keys should be considered for tasks requiring only a
limited number of control inputs, or in conjunction with other
dialogue types as a ready means of accomplishing critical
inputs which must be made quickly without syntax error.

Reference: MS 5.15.3.7.

-2 Function keys should be considered as a means of accomplishing

frequently required control inputs.

Example: ENTER, PRINT, PAGE FORWARD, PAGE BACK, OPTIONS,
Se.

Comment: When generally used options are always implicitly
available via function keys, they need not be included in
displayed menus.

Reference: BE 4.4.

See also: 3.1.3-18, Section 3.2.

-149-

3.1.4 Function Keys (cont.)

-3 Function keys should be used as a means of permitting interim
control inputs, i.e., for control actions taken before the
completion of a transaction.

Example: TAB, DITTO, DEFAULT, HELP, etc.

-4 Function keys should be labeled informatively to designate the
function they perform; labels should be sufficiently different
from one another to prevent user confusion.

Example: Log-on should not be initiated by a key labeled
PANIC. (This example may seem unlikely, but is cited from
an actual USI design.)

Example: Two keys should not be labeled ON and DN.

Reference: BB 4.4.5; MS 5.15.2.10.

-5 If a function is continuously available, to serve a single
function, just one label should be on the key.

-6 If a function key is used for more than one function, the user
should always have some convenient means of knowing which
function is currently available.

Comment: If a key is used for just two functions, depending
upon defined operational mode, then alternate
self-illuminated labels should be provided on the key to
indicate which function is current. In these circumstances,
it is preferable that only the currently available function
is visible, so that the labels on a group of keys will show
what can be done at any point rather than what has been
done.

Comment: If the function of a key is specific to a
particular step in the transaction sequence, then the
current function should be indicated by an appropriate
guidance message on the user's display.

Reference: MS 5.15.3.8.

-7 If a function is assigned to a particular key for one
task/transaction, that function should be assigned consistently
to the same key in other transactions.

Reference: BB 4.4.5.

-150-

3.1.4 Function Keys (cont.)

-8 When a function key performs different functions in different
operational modes, those functions should be made as consistent
as possible.

Example: A key labeled RESET should not be used to dump
data in one mode, save data in another, and signal task

completion in a third.

-9 When the set of functions assigned to keys changes as a result
of user selection Cso-called multifunction keys), an easy means
should be provided for the user to return to the initial, base-
level functions.

Comment: In effect, multifunction keys can provide
hierarchic levels of options much like menu selection
dialogues, with the same need for rapid return to the
highest-level menu.

Comment: For some applications, it may be desirable to
automate the return to base-level assignment of multi-
function keys, to occur immediately on completion of a
transaction and/or by time-out following a period of user
inaction. The optimum period for any automatic time-out
would have to be determined empirically for each

application.

Reference: Aretz and Kopala, 1981.

-10 Function keys (and other devices) not needed for current inputs
should be temporarily disabled under computer control at any
step in a transaction sequence; mechanical overlays manipulated
by the user should not be used for this purpose.

Comment: If the user selects a function key that is invalid
at a particular step in a transaction sequence, no action
should result except display of an advisory message
indicating what functions are available at that point.

Reference: MS 5.15.3.9.4.3; PR 4.12.4.5.

3.1.4 Function Keys (cont.)

-11 When some function keys are active and some are not, the
current subset of active keys should be indicated in some
noticeable way to the user, perhaps by brighter illumination.

Comment: This practice will speed user selection of
function keys.

Reference: Hollingsworth and Dray, 1981.

-12 Function keys should be grouped in distinctive locations on the
keyboard to facilitate their learning and use; frequently used
function keys should be placed in the most convenient
locations.

Comment: It is preferable that frequently used keys not

require double (control/shift) keying.

Reference: MS 5.15.4.6.1.d.

-13 The layout of function keys should be compatible with their
importance, keys for emergency functions should have a
prominent position and distinctive coding (e.g., size and/or
color); keys with potentially disruptive consequences should be
physically protected.

-14 Function keys should require only single activation to
accomplish their function, and should not change function with
repeated activation.

Example: Log-on should not be initiated by pressing a PANIC
key twice.

-15 When function key activation does not result in any immediately
observable natural response, the user should be given some
other form of computer acknowledgment.

Comment: Temporary illumination of the function key would
suffice, if key illumination is not used to signal available
options. Otherwise a displayed advisory message should be
used.

3.1.5 Command Lanituaite

-1 Command language dialogue should be considered for tasks
involving a wide range of user inputs, where users may be
highly trained in the interests of achieving efficient
performance, and where computer response is expected to be
relatively fast.

Comment: Command language should also be considered for
data entry in arbitrary sequence.

-2 When command language is used for control input, an appropriate
entry area should be provided in a consistent location on every
display, preferably at the bottom.

Comment: Adjacent to the command entry area there should be
a defined display window used for prompting control input,
for recapitulation of command sequences (with scrolling to
permit extended review), and to mediate question-and-answer
dialogue sequences (i.e., prompts and responses to prompts).

Reference: MS 5.15.4.6.1.d.

-3 The words chosen for a command language should reflect the
user's point of view and not the programmer's, corresponding
consistently with the user's operational language.

Reference: EG 4.1.1, 4.2.12, 4.2.13; MS 5.15.1.4.5.

-153-

3.1.5 Command Language (cont.)

-4 Abbreviation of entered commands (i.e., entry of the first 1-3
letters) should be permitted to facilitate entry by experienced
users.

Example: If a "P" uniquely identifies a print command
(i.e., no other commands start with "P") then the user
should be able to enter PRINT, or PR, or P, or any other

truncation to initiate printing.

Comment: As a corollary, misspelling of command entries
should also be tolerable, within the limits of computer
recognition. The computer can interrogate the user as
necessary to resolve ambiguous entries.

Comment: Variable abbreviation, i.e., keying only enough
characters of a command to uniquely identify it, should
probably not be used when the command set is changing. For
the user, an abbreviation that works one day may not work
the next. For the programmer, the addition of any new
command may require software revision of recognition logic
for other commands.

Reference: BB 6.4.3; Demers, 1981.

-5 All words in a command language, and their abbreviations,
should be consistently used and standardized in meaning from
one transaction to another, and from one task to another.

Example: Do not use EDIT in one place, MODIFY in another,
UPDATE in a third, all referring to the same kind of action.

Reference: EG 4.2.9, EG 4.2.13; MS 5.15.2.6; Demers, 1981.

-6 Words in a command language should be chosen to be distinctive
from one another, and to emphasize significant differences in
function, in order to minimize user confusion.

Example: Do not label two commands DISPLAY and VIEW, when
one permits editing displayed material and one does not.

Comment: In general, do not give different commands
semantically similar names, such as SUM and COUNT.

Reference: BB 6.2.5; MS 5.15.2.10.c.

-154-

3.1.5 Command Language (cont.)

-7 A command language should provide flexibility, permitting the
user to assign personal names to files, frequently used command
sequences, etc.

Comment: Frn.quently used commands should be made easy to
accomplish. Where users will differ in the frequency of the
commands they use, the designer should provide for
flexibility in command naming.

-8 A command language should be supported by whatever computer
processing is necessary so that the user can manipulate data
without concern for internal storage and retrieval mechanisms.

Example: The user should be able to request display of a
file by name alone, without having to enter any further
information such as file location in computer storage.

Comment: Where file names are not unique identifiers, the
computer should be programmed to determine whatever further
context is necessary for identification, automatically in
relation to the current transaction sequence, or perhaps by
asking the user to designate a "directory" defining a subset
of files of current interest.

-9 The features of a command language should be designed in groups
(or "tlayers") for ease in learning and use.

Comment: The fundamental core, or bottom layer, of the
language should be the easiest, allowing use of the system
by people with little training and/or limited needs.
Successive layers of the command language can then increase
in complexity for users with greater skills.

Reference: Reisner, 1977.

-10 The user should be able to request prompts as necessary to
* . determine required parameters in a command entry, or to

determine available options for an appropriate next command
entry.

Reference: MS 5.15.1.4.5.

-155-

3.1.5 Command Language (cont.)

-11 When command entries are prompted automatically, it should be
possible for an experienced user to key a series of commands at
one time ("command stacking") so as to shortcut the prompting
sequence.

Reference: BB 6.8.

See also: Section 3.2.

-12 Insofar as possible, the user should be able to enter commands
without punctuation.

-13 If punctuation is needed, perhaps as a delimiter to distinguish
optional parameters, or the separate entries in a stacked
command, one standard symbol should be used consistently for
that purpose, preferably the same symbol (slash) used to
separate a series of data entries.

See also: 1.4-4, 3.2-18.

-14 Neither the user nor the computer program should have to
distinguish between single and multiple blanks in a command
entry.

Comment: People cannot be relied upon to pay careful
attention to such details. The computer should handle them
automatically, e.g., ensuring that two spaces follow every
period in text entry, adding spaces needed to justify lines
of text, etc.

-15 When command entries are subject to misinterpretation (as in
the case of voice input), or when an interpreted command may
have disruptive consequences, the user should be given an
opportunity to review and confirm a displayed interpretation of.
the command before it is executed.

Comment: For beginning users, it might be desirable to
permit review of interpreted commands for every transaction.
Skilled users, however, should be able to suppress such
toutine review.

-156-

3.1.5 Command Language (cont.)

-16 When a command entry is not recognized, the computer should
initiate a clarification dialogue, rather than rejecting the
command outright.

Comment: Poorly stated commands should not simply be
rejected. Instead, the computer should be programmed to
guide the user toward a proper formulation, preserving the
faulty command for reference and modification, and not
require the user to re-key the entire command just to change
one part.

3.1.6 Query Language

-1 Query language dialogue should be considered as a specialized
sub-category of general command language for tasks emphasizing
unpredictable information retrieval (as in many analysis and
planning tasks), with moderately trained users and fast
computer response.

Comment: All recommendations for command language design
would apply equally to query languages, with the addition of
some more specific guidelines listed below.

Reference: Ehrenreich, 1981.

-2 When the organization of the computer data base is reflected in
the query language, that organization should match the data
structure perceived by users to be natural.

Comment: The users' natural perception of data organization
can be discovered through experimentation or by survey.

Reference: Durding, Becker and Gould, 1977.

-3 One single representation of the data organization should be
established for use in query formulation, rather than multiple
representations.

Comment: Beginning or infrequent users may be confused by
* different representational models.

-157-

3.1.6 Query Language (cont.)

-4 The need for quantificational terms in query formulation should
be minimized.

Exception: "no" or "none".

Comment: People have difficulty in using quantifiers
unambiguously. When quantifiers must be used, it may be
desirable to have the user select the desired quantifier
from a set of sample statements so worded as to maximize
their distinctiveness.

-5 Use of operators subject to frequent semantic confusion, such
as "or more" and "or less", should be minimized.

Example: A user should not have to convert "over 50 years
old" into "51 or more".

3.1.7 Natural Language

-1 Unconstrained natural language dialogue should not be
considered for USI design at this time; natural language may
find future use in applications where task requirements are
broad ranging and poorly defined, where little user training
can be provided, and where computer response will be fast.

Comment: Computer processing of natural language is now
being developed on an experimental basis. For current
applications where task requirements are well defined, other
types of dialogue will prove more efficient.

Reference: Shneiderman, 1981.

3.1.8 Graphic Interaction

-1 Graphic interaction should be considered as a supplement to
other forms of man-machine dialogue where special task
requirements exist; effective implementation of graphic
capabilities will require very fast computer response.

-158-

3.2 Transaction Selection

-1 The sequence of transaction selections should generally be
dictated by the user's choices and not by Internal computer
processing constraints.

Example: A data entry clerk should be able to enter items
in whatever order they are available, when order is
variable, as in taking reservation data by telephone.

Comment: In some cases this means that the computer may
have to store current inputs until they become relevant to
subsequent data processing.

Comment: When a logical sequence of transactions can be
determined in advance, USI design might encourage and help a
user to follow that sequence. Guidance may be desirable
though constraint Is not.

Reference: PR 4.6.7.

See also: 3.0-1, 3.0-5, 3.0-6.

-2 An initial menu of control options should always be available
for user selection, to serve as a "home base" or consistent
starting point for control inputs at the beginning of a
transaction sequence.

Comment: Such a starting point is helpful even when all
dialogue is user-initiated. This capability can be
implemented as an OPTIONS function key, or as an explicit
control option on every display, or as a generally available
implicit option, or as a consistent default for a null
control input.

Reference: BB 4.1; PR 3.3.16.

-159-

3.2 Transaction Selection Ccont.)

-3 The general OPTIONS display should show primary control inputs
grouped, labeled and ordered in terms of their logical
function, frequency and criticality of use, following the
guidelines provided for menu selection.

See also: Section 3.1.3.

-4 The user should be able to make at least some sequence control
inputs directly at any step in a transaction sequence (i.e.,
from any display frame) without having to return to a general
options display.

Comment: In particular, the user should not have to
remember data or control codes given on one display for
later input on a different display.

-5 Information should be provided the user concerning control
options specifically appropriate at any step in A transaction
sequence, either incorporated in the display or else available
through a request for HELP.

Reference: MS 5.15.3.5.

-6 Control options that are generally available at any step in a
transaction sequence should be treated as implicit options,

i.e., need not be included in a display of step-specific
options; frequently used implicit options should be input by
function keys.

Comment: For applications involving experienced users,
implicit options may be input by command entry.

See also: 3.1.4-2.

-7 When selection among displayed options is to be accomplished by
pointing, the cursor should be placed automatically on the
first (most likely) option at initial display generation.

-8 When selection among displayed options is to be accomplished by
keyed entry of a corresponding code, the cursor should be
placed automatically in the command entry area at initial
display generation.

Reference: PR 4.7.1.

-160-

3.2 Transaction Selection (cont.)

-9 When displayed options can be selected by code entry, the code
associated with each option should be included on the display
in some consistent, identifiable manner.

Example: In many applications an equal sign can be used for
this purpose, as N=NEXT PAGE, P-PREV PAGE, etc.

-10 The wording of step-specific control options should reflect the
current concerns and likely questions of the user at that step
in a transaction sequence.

Reference: MS 5.15.2.10.d.

-11 The user should not be offered control options that he cannot

take.

See also: 3.1.3-17.

-12 If a default for a null control input is defined for any step
in a transaction sequence, that default should be consistent in
USI design, or else indicated in the display of step-specific
control options.

Example: In menu selection, a null entry might always
default to the first of the displayed options.

Reference: EG 4.2.4.

-13 When control input is accomplished by command entry, the user
should have some consistent means to request prompting for

input options or parameter values not already shown on the

Example: Keying a question mark in the command entry area
would be a satisfactory method of requesting prompts, or
else using an explicitly labeled HELP function key.

Comment: In some applications it may be desirable to let an
inexperienced user simply choose a general "prompt mode" of
operation, where any command entry produces automatic
prompting of (required or optional) parameters and/or
succeeding input options.

Reference: Demers, 1981.

-161-

3.2 Transaction Selection (cont.)

-14 At any step in a defined transaction sequence, if there are no
alternative step-specific control options, then a consistent

command should be used to continue to the next step.

Example: NEXT, STEP or CONTINUE might be suitable names for
this function.

Exception: If data entry is involved, then an explicit
ENTER command should be used.

Reference: PR 4.11.

-15 When control input involves command entry, the user should be
permitted to key a sequence of codes for option selection as a
single "stacked" command.

Example: In particular, the user should be able to enter
stacked commands from the initial menu of general OPTIONS,
so that an experienced user can make any specific control
input the first step in a transaction sequence.

Example: Command stacking may be helpful when a user is

being prompted to enter a series of parameter values, and
knows in advance what several succeeding prompts will
request and what values to enter.

Comment: Command stacking will permit a transition from
simple step-by-step control input by novice users, as in
menu selection and question-and-answer dialogues, to the
entry of extended command-language statements by experienced
users; command stacking is especially helpful in time-shared
systems where computer response to any user input may be
slow.

Reference: EG 6.2, 6.2.1; PR 2.6, 4.7.3; Palme, 1979.

See also: 3.1.5-11.

-16 In command stacking, user inputs should be in the same order as
they would normally be made in a succession of separate command
entry actions.

Reference: EG 6.2.1.

-162-

3.2 Transaction Selection (cont.)

-17 In command stacking, acceptable user inputs should include
command names or their abbreviations or defined codes; if
stacked command inputs are potentially ambiguous, the computer
should display the interpreted command sequence for user
confirmation or correction.

Reference: EG 6.2.1.

-18 In command stacking, if some special symbol must be used to
separate command entries, then one standard symbol should be
adopted for that purpose, preferably the same symbol (slash)
used as a delimiter for sequential data entries.

Reference: EG 6.2.1.

See also: 1.4-4, 3.1.5-13.

-19 If a stacked command results in only partial completion of a
menu selection sequence (i.e., if further user selections must
be made), then the appropriate next menu display should be
presented to guide completion of control input.

Reference: PR 4.7.3.

-20 Flexibility in transaction selection should be provided by
permitting the user to assign a single name to a defined series
of control inputs, and then use this new "macro" for subsequent
command entry.

Comment: In this way the user can make frequently required
but complicated tasks easier to accomplish, when the USI
designer has failed to anticipate the particular need.

Reference: Demers, 1981.

-163-

3.3 Interrupt

-1 Flexibility in control should be provided by permitting the
user to interrupt, defer or abort a current transaction
sequence, in consistently defined ways appropriate to specific
task requirements.

Comment: For an experienced user, it may be desirable to
permit multi-tasking of the computer, so that a transaction
involving slow data processing can be accomplished as
"background" to interim shorter transactions. In such a
case, of course, the computer must be programmed to signal
completion of the background transaction.

Comment: Provision of flexible interrupt capabilities for
the user will generally require some sort of suspense file
or other buffering in software design. Such capabilities
are valuable, however, in permitting the user to correct
mistaken entries, and in permitting the computer to require
user confirmation of potentially destructive entries.

Reference: PR 3.3.16, 3.3.17.

-2 If different degrees of interruption in sequence control are
provided, they should be accomplished by differently named
control options.

Comment: As a negative exainple, it would not be good design
practice to provide a single ESCAPE key which has different
effects depending upon whether it is pushed once or twice;
the user may be confused by such expedients, and uncertain
about what action has been taken and its consequences.

-3 If appropriate to sequence control, a CANCEL option should be
provided, which will have the consistent effect of regenerating
the current display without processing any interim changes made
by the user.

Comment: In effect, interim entries would be erased..a

See also: 1.4-2.

-164-

3.3 Interrupt (cont.)

-4 If appropriate to sequence control, a BACKUP option should be
provided, which will have the consistent effect of returning to
the display entered in the last previous transaction.

Comment: Such a BACKUP capability will generally prove
feasible only in the software design of well-defined
transaction sequences, but will prove helpful when it can be
provided.

Comment: BACKUP might be designed to include cancellation
of any interim entries made in a pending transaction.
Alternatively, pending entries might be preserved without
processing. USI design should be consistent in this regard.

Reference: MS 5.15.1.2.6.

See also: 1.4-2.

-5 If appropriate to sequence control, a RESTART option should be
provided, which will have the consistent effect of returning to
the first display in a defined transaction sequence, permitting
the user to review a sequence of entries and make necessary
changes.

Comment: As an extension of the BACKUP capability, RESTART
is useful only in well-defined transaction sequences such as
step-by-step data entry in a question-and-answer dialogue.

Comment: RESTART might be designed to include cancellation
of any interim entries made in a pending transaction.
Alternatively, pending entries might be preserved without
processing. USI design should be consistent in this regard.

See also: 1.4-2.

-6 If appropriate to sequence control, an ABORT option should be
provided, which will have the consistent effect of cancelling
all entries in a defined transaction sequence; when data
entries or changes will be nullified by an ABORT action, the
user should be asked in an advisory message to CONFIRM the
ABORT.

Comment: An ABORT action, combining the functions of
RESTART and CANCEL, is again relevant only to well-defined
transaction sequences, specifically those with a recognized
beginning.

Reference: BB 1.8.

-165-

3.3 Interrupt (cont.)

-7 If appropriate to sequence control, an END option should be
provided, which will have the consistent effect of concluding a
repetitive transaction sequence and returning control to a
general OPTIONS menu.

Example: In routine data entry, where the end of one
transaction is designed to lead automatically to the
beginning of the next transaction, the user needs some
control input such as END to signal when a batch of
transactions has been completed.

Comment: END can be implemented by whatever means are
appropriate to the dialogue design, i.e., by menu selection,
command entry, or function key.

Reference: EG 4.2.10.

See also: 3.0-15.

3.4 Context Definition

-1 Sequence control software should be designed to maintain
context for the user throughout the series of transactions
comprising a task, recapitulating previous inputs affecting
present actions, and indicating currently available options
where appropriate.

See also: 1.8-3, 3.0-17.

-2 In tasks where transaction sequences are variable, the user
should be able to request a displayed list of prior entries if
needed to determine present status.

Comment: Such a capability may not be needed for routine
transactions if they are designed in such a way that each
step identifies its predecessors explicitly, although even
in those circumstances a user may be distracted and at least
momentarily become confused.

Reference: EG 4.2.7.

-166-

3.4 Context Definition (cont.)

-3 Insofar as possible, sequence control software should be
designed to carry forward a representation of the user's
knowledge base and current activities; the user should not have
to re-enter previously entered data relevant to current control
inputs.

Example: If data have just been stored in a named file,
then the user should be able to request a printout of that
file without having to re-enter its name.

Exception: If transactions involving contextual
interpretation would have destructive effects (e.g., data
deletion), then the interpreted command should be displayed
first for user confirmation.

Comment: The software logic supporting contextual
interpretation of control inputs need not be perfect in
order to be helpful. When ambiguity results, it may still
be easier for the user occasionally to review and correct an
interpreted command than always to generate a complete
command initially.

Reference: MS 5.15.2.9; PR 2.3.

-4 When context for sequence control is established in terms of a
defined operational mode, then some means should be provided to
remind the user of the current mode and other pertinent
information.

Example: If text is displayed in an editing mode, then a
caption might indicate EDIT as well as the name of the
displayed text; if an INSERT mode is selected for text
editing, then some further displayed signal should be
provided.

Reference: EG 4.2.1.

-167-

3.4 Context Definition (cont.)

-5 The value of any control parameter(s) currently operative
should be displayed for user reference.

Comment: This practice is helpful even when the user
selects all parameters himself, since he may well forget
them, particularly if his task activities are interrupted.

Comment: When there are a large number of currently
operative control parameters, it may prove impractical to
display them4 continuously. In such a case, it may suffice
to list them on an auxiliary HELP display accessed by user
option.

Reference: MS 5.15.3.5.b.

-6 Whatever information is given the user to provide context for
sequence control should be distinctive in location and format,
and consistently displayed from one transaction to the next.

Reference: MS 5.15.3.6, 5.15.4.4.

3.5 Error Management

-1 The computer software should deal appropriately with all
possible control inputs, correct and incorrect, without
inducing errors in sequence control.

Example: If the user selects a function key that is invalid
at a particular step in a transaction sequence, no action
should result except display of an advisory message
indicating what functions are appropriate at that point.

Comment: For certain routine and easily recognized errors,
such as trying to tab beyond the end of a line, a simple
auditory signal ("beep") may be sufficient computer
response.

Reference: PR 4.12.4.5.

See alo: 3.1.4-10.

-168-

3.5 Error Management (cont.)

*-2 The user should be able to edit an extended command during its
composition, by backspacing and rekeying, before taking an
explicit action to ENTER the command.

Comment: Users can often recognize errors in keyed input

prior to final entry.

Reference: EG 5.4.

See also: 1.4-2.

-3 If an element of a command entry is not recognized, or
logically inappropriate, sequence control software should
prompt the user to correct that element without having to
re-enter the entire command.

Example: A faulty command can be retained in the command
entry area of the display, with the cursor automatically
positioned at the incorrect item, plus an advisory message
describing the problem.

Reference: BB 1.3; EG 4.2.2, 4.2.3; MS 5.15.1.2.1,
5.15.1.2.7. b.

-4 If an error is detected in a stacked series of command entries,
USI design should be consistent in how this is handled, from
one transaction sequence to another.

Comment: It may help the user if the commands are executed
to the point of error, or it may not. In most applications,
partial execution will probably prove desirable. The point
is that a considered USI design decision should be made and
then followed consistently.

Reference: BB 1.5; EG 5.6; PR 4.7.3.

-5 If only a portion of a stacked command can be executed, that
problem should be indicated to the user with appropriate
guidance to permit completion of the intended control input.

See also: 3.2-19.

-169-

3.5 Error Management (cant.)

-6 The ENTER action for command entry should be the same as that
for data entry; direct selection of menu options should also
require some explicit ENTER action.

Comment: When a common action is used for both data entry
and command entry, there will be less likelihood of user
confusion and error.

See also: 1.0-8, 1.1-5, 3.0-5.

-7 When a user completes correction of an error, whether of a
command entry or data entry, the user should be required to
take an explicit action to re-enter corrected inputs; the new
ENTER action should be the same as whatever action was
appropriate to make that input originally.

Reference: PR 4.12.4.6.

-8 When a default value is included in command entry, it may be
helpful to recapitulate the command in its fully interpreted
form for user confirmation; if this practice is followed, it
should be done consistently.

-9 When a control input will cause any extensive change in stored
data, procedures and/or system operation, and particularly if
that change cannot bc easily reversed, the user should be
notified and required to confirm the action before it is
implemented.

Reference: BB 1.10; EG 4.1.2, 4.2.8; MS 5.15.1.2.3,
5. 15. 1.2. 7-.c.

-10 The prompt for CONFIRM action should be worded in such a way
that potential data loss is clearly stated.

Example: CONFIRM DELETION OF ENTIRE AIRFIELD FILE may give
adequate warning; CONFIRM DELETE ACTION does not.

-170-

3.5 Error Management (cont.)

-11 User confirmation of a control input or data entry should be 1
accomplished with an explicitly labeled CONFIRM function key,
different from the ENTER key.

Comment: Confirmation should not be accomplished by pushing
some other key twice.T

Comment: Some USI designers recommend that in special cases
confirmation should be made more difficult still, e.g., by
keying the separate letters in C-O-N-F-I-R-M. A better
approach might be to make any user action (including
over-hasty confirmation) immediately reversible, a feature
now available in some current USI designs.

See also: 3.1.4-4, 3.1.4-14.

-12 When the user signal.. that he is ready to log off, sequence
control software should check pending transactions and, if data
loss seems probable, should display an advisory message
requesting confirmation.

Example: CURRENT DATA ENTRIES HAVE NOT BEEN FILED; SAVE IF
NEEDED, BEFORE CONFIRMING LOGOFF.

Comment: The user will sometimes suppose that a job is done
before he has taken necessary final actions.

-13 When a data entry transaction has been completed and errors
detected, sequence control logic should permit direct,
immediate correction by the user.

Comment: It is helpful to correct data entry errors at the
source, i.e., while the user still has the entry in mind
and/or sc.,irce documents at hand.

Comment: For transactions involving extended entry of
multiple items, computer checking might be invoked by
separate entry of each page (or section) of data.

Reference: PR 2.5.

See also: 1.7-4.

-171-

3.5 Error Management (cont.)

-14 The user should be able to return easily to previous steps in a
transaction sequence in order to correct an error or make any
other desired change.

Reference: MS 5.15.1.2.6.

See also: Section 3.3.

-15 When considerations of data security do not prohibit, the user
should be able to change any data that are currently displayed.

Comment: The user should not have to specify that he wants
to make changes in advance of calling for a display. That
practice may be simpler for the software designer, but is
confusing for the user.

3.6 Alarms

-1 In many applications, particularly those involving monitoring
and process control, the user (or some authorized supervisor)
should be permitted to define conditions, in terms of variables
and values, that will result in automatic generation of alarm
messages.

Example: The nurse in charge of an intensive care
monitoring station might need to specify for each patient
warning signals when blood pressure ("variable") exceeds or
falls below defined levels ("values").

Exception: Situations where alarm conditions must be
pre-defined by functional, procedural, or perhaps even legal
requirements, such as violation of aircraft separation in
air traffic control.

-2 Alarm signals and messages may take a variety of forms, but
should be distinctive and consistent for each class of events.

Comment: The user might be permitted to define the nature

of each alarm as well as its initiating event.

-172-

3.6 Alarms (cont.)

-3 The user should be provided a simple, consistent means of
acknowledging and turning off non-critical alarm signals.

Example: A function key labeled ALARM ACK would suffice for
that purpose.

Reference: MS 5.15.4.6.1.a.

-4 The user may be required to take more complicated actions in
order to respond to critical alarms, and to acknowledge special
alarms in special ways; but such special acknowledgment actions

should be designed so that they will not inhibit or slow
remedial user response to a critical initiating condition.

3.7 Design Change

(no guidelines presently available)

-173-

,L

APPENDIX E

REFERENCES FOR DESIGN GUIDELINES

Anyone involved in compilation of USI design guidelines must
begin and end by acknowledging the significant contributions of
other people. This undertaking is truly a collaborative effort, as
each new student of the field builds upon the work of predecessors
and colleagues. It is good that this is so. All USI design
guidelines are based in some degree on judgment, and often the joint
judgment of multiple contributors will prove sounder than the views
of just one person.

Most of the guidelines presented in this report were not
invented here, but were built on contributions by other people.
Where the idea for a guideline came from a particular source, or is
supported by prior recommendations, an annotation of appropriate
references has been included for that guideline. Such annotation
offers credit, where credit is due. More importantly, cited
references permit anyone questioning a particular guideline to
explore its antecedents, perhaps to gain a better understanding of
what is intended.

Citation of references does not necessarily mean that previous
author(s) would agree with the wording of a guideline presented
here. In some instances, the wording of a previously published
guideline has been preserved. In many more cases, however, proposed
guidelines have been re-worded here, and sometimes revised
drastically.

Revision of published guidelines has not been undertaken
capriciously, but only after careful consideration. During 1981,
guidelines for data entry and for sequence control functions
(Appendices B and D) were distributed in a previous report to the
USI Guidelines Group. Replies were received from nine members of
the group:

Sara R. Abbott Union Carbide Corporation
Christopher J. Arbak Systems Research Laboratories, Inc.
J. David Beattie Ontario Hydra
Kent B. Davis Litton Data Command Systems
Richard M. Kane Essex Corporation
Lorraine F. Normore Ohio State University Human Performance Center
Steven P. Rogers Anacapa Sciences, Inc.
Eric M. Schaffer Modern Human Resources, Inc.
John C. Thomas IBM Corporation

-175-9-

pmcu,1z PAM ILAaK.W 11US

These reviewers provided ratings for the guidelines, and
offered suggestions and critical comments. Overall, 210 guidelines
were rated, 79 for data entry and 131 for sequence control
functions. Every guideline received mixed ratings, though some more
mixed than others. Every guideline was judged useful by someone;
there was no guideline that was judged useful by everyone. Here is
a summary of the ratings:

guideline rated "useful" 59 %
guideline rated "fairly useful" 28
guideline rated "trivial" 2
guideline is wrong 2
guideline should be revised 6
guideline should be eliminated 1

In addition to the ratings, 209 specific comments or criticisms
were offered, pertaining to 127 of the guidelines. As a result of
those comments, changes were made to 123 of the guidelines, as
published in the present report:

Added Re-worded Deleted

guidelines 3 56 2
examples 6 3
exceptions 4 2
comments 41 5
references 1

To the extent that those revisions have improved the published
guidelines, these reviewers deserve recognition. It may be true,
however, that none of these reviewers would agree with all of the
resulting guidelines, since opposed opinions could not always be
effectively resolved.

Previously published guidelines were also reviewed by students
in a course on Human Performance at the University of Michigan,
under the tutelage of Paul Green, and several changes to guidelines
resulted from suggestions by student reviewers. Further changes
were recommended by Arlene F. Aucella at MITRE.

It is clear that critical review of USI design guidelines
should continue. No guideline proposed here is worded so perfectly
that it cannot be improved. And the general need persists for more
illustrative examples, more completely noted exceptions, more
explanatory comment, and more references. References are
particularly needed to aid the review process, in cases where
reviewers must try to resolve conflicting judgment.

-176-

In this report, a beginning has been made in citing source
material for guidelines. In the guidelines compilation in previous
appendices of this report, references to general sources for
guidelines have been given in abbreviated form, with a two-letter
code followed by the paragraph or item number in the referenced
document. Four general sources are referenced in this way:

BB = Brown, Burkleo, Mangelsdorf, Olsen and Williams, 1981

EG = Engel and Granda, 1975

MS = MIL-STD-1472C, 1981

PR = Pew and Rollins, 1975

References to more specific source documents have been cited in
conventional form by author and date. Those specific document
references are listed in the pages that follow. This is obviously
just a small sample of potentially relevant sources, including
primarily recent references immediately familiar to the author. A
concerted effort will be made to expand this listing in order to
provide more comprehensive coverage in the future.

Perhaps you can help in this work by proposing new guidelines,
or by suggesting improvements to those published here, or by citing
examples, exceptions, and references. If so, please copy the change
form included at the back of this report, and use it for your
contribution.

1

:I.

-177-

It
.,

REFERENCES FOR GUIDELINES

Aretz, A. J. and Kopala, C. J. Automatic return in multifunction
control logic. In Proceedings of the 25th Annual Meeting. Santa
Monica, California: Human Factors Society, 1981, 254-256.

Brown, C. M., Burkleo, H. V., Mangelsdorf, J. E., Olsen, R. A., and
Williams, A. R., Jr. Human Factors Engineering Standards for
Information Processing Systems. Sunnyvale, California: Lockheed
Missiles and Space Company, Inc., 15 June 1981.

Bury, K. F., Boyle, J. M., Evey, R. J., and Neal, A. S. Data
manipulation on a visual display terminal: Windowing or
scrolling? Human Factors, in press.

Campbell, A. J., Marchetti, F. M., and Mewhort, D. J. K. Reading
speed and text production: A note on right-justification
techniques. Ergonomics, 1981, 24(8), 633-640.

Demers, R. A. System design for usability. Communications of the
ACM, 1981, 24(8), 494-501.

Dray, S. M., Ogden, W. G., and Vestewig, R. E. Measuring
performance with a menu-selection human-computer interface. In
Proceedings of the 25th Annual Meeting. Santa Monica, California:
Human Factors Society, 1981, 746-748.

Durding, B. M., Becker, C. A., and Gould, J. D. Data organization.
Human Factors, 1977, 19(1), 1-14.

Ehrenreich, S. L. Query languages: Design recommendations derived
from the human factors literature. Human Factors, 1981, 23(6),
709-725.

Engel, S. E. and Granda, R. E. Guidelines for Man/Display
Interfaces, Technical Report TR 00.2720. Poughkeepsie, New York:
IBM, December 1975.

Gade, P. A., Fields, A. F., Maisano, R. E., and Marshall, C. F.
Training approaches and data entry methods for semi-automated
command and control systems. In Proceedings of the 24th Annual
Meeting. Santa Monica, California: Human Factors Society, 1980,
416-420.

Gregory, M. and Poulton, E. C. Even versus uneven right-hand
margins and the rate of comprehension in reading. Ergonomics,
1970, 13, 427-434.

-178-

Hamill, B. W. Experimental document design: Guidebook organization
and index formats. In Proceedings of the 24th Annual Meeting.
Santa Monica, California: Human Factors Society, 1980, 480-483.

Hanson, R. H., Payne, D. G., Shiveley, R. J., and Kantowitz, B. H.
Process control simulation research in monitoring analog and
digital displays. In Proceedings of the 25th Annual Meeting.

Santa Monica, California: Human Factors Society, 1981, 154-158.

Hollingsworth, S. R. and Dray, S. M. Implications of post-stimulus
cueing of response options for the design of function keyboards.
In Proceedings of the 25th Annual Meeting. Santa Monica,
California: Human Factors Society, 1981, 263-265.

Martin, J. Design of Man-Computer Dialogues. Englewood Cliffs, New
Jersey: Prentice-Hall, 1973.

Miller, D. P. The depth/breadth tradeoff in hierarchical computer
menus. In Proceedings of the 25th Annual Meeting. Santa Monica,
California: Human Factors Society, 1981, 296-300.

Miller, R. B. Response time in user-system conversational
transactions. In Proceedings of the AFIPS Fall Joint Computer
Conference, 1968, 267-277.

Morrill, C. S. and Davies, B. L. Target tracking and acquisition in
three dimensions using a two-dimensional display surface. Journal
of Applied Psychology, 1961, 45, 214-221.

Moses, F. L. and Ehrenreich, S. L. Abbreviations for automated
systems. In Proceedings of the 25th Annual Meeting. Santa
Monica, California: Human Factors Society, 1981, 132-135.

MIL-STD-1472C. Military Standard: Human Engineering Design
Criteria for Military Systems, Equipment and Facilities.
Washington: Department of Defense, 2 May 1981.

Noyes, L. The positioning of type on maps: The effect of
surrounding material on word recognition. Human Factors, 1980,
22(3), 353-360.

Palme, J. A human-computer interface for non-computer specialists.
Software -- Practice and Experience, 1979, 9, 741-747.

Pew, R. W. and Rollins, A. M. Dialog Specification Procedures,
Report 3129 (revised). Cambridge, Massachusetts: Bolt Beranek
and Newman, 1975.

-179-

, ., T _c .,_ _-. - ,~

Ramsey, H. R. and Atwood, M. E. Human Factors in Computer Systems:
A Review of the Literature, Technical Report SAI-79-111-DEN.
Englewood, Colorado: Science Applications, Inc., September 1979.
(NTIS No. AD A075 679)

Reisner, P. Use of psychological experimentation as an aid to
development of a query language. IEEE Transactions on Software
Engineering, 1977, SE-3, 218-229.

Seibel, R. Data entry devices and procedures. In Van Cott, H. P.
and Kinkade, R. G. (Eds.) Human Engineering Guide to Equipment
Design. Washington: U. S. Government Printing Office, 1972,
311-344.

Shneiderman, B. A note on human factors issues of natural language
interaction with database systems. Information Systems, 1981,
6(2), 125-129.

Smith, S. L. Angular estimation. Journal of Applied Psychology,
1962, 46, 240-246. (a)

Smith, S. L. Color coding and visual search. Journal of Experi-
mental Psychology, 1962, 64(5), 434-440. (b)

Smith, S. L. Color coding and visual separability in information
displays. Journal of Applied Psychology, 1963, 47(6), 358-364.
(a)

Smith, S. L. Man-computer information transfer. In Howard, J. H.
(Ed.) Electronic Information Display Systems, 284-299.
Washington: Spartan Books, 1963. (b)

Smith, S. L., Farquhar, B. B., and Thomas, D. W. Color coding in
formatted displays. Journal of Applied Psychology, 1965, 49(6),
393-398.

Smith, S. L. and Goodwin, N. C. Computer-generated speech and
man-computer interaction. Human Factors, 1910, 12(2), 215-223.

Smith, S. L. and Goodwin, N. C. Alphabetic data entry via the
Touch-Tone pad: A comment. Human Factors, 1971, 13(2), 189-190.
(a)

Smith, S. L. and Goodwin, N. C. Blink coding for information

display. Human Factors, 1971, 13(3), 283-290. (b)

Smith, S. L. and Goodwin, N. C. Another look at blinking displays.

Human Factors, 1972, 14(4), 345-347.

-180-

Smith, S. L. and Thomas, D. W. Color versus shape coding in
information displays. Journal of Applied Psychology, 1964, 48(3),
137-146.

Tullis, T. S. An evaluation of alphanumeric, graphic, and color
information displays. Human Factors, 1981, 23(5), 541-550.

Whalley, P. C. and Fleming, R. W. An experiment with a simple
recorder of reading behaviour. Programmed Learning and
Educational Technology, 1975, 12(2), 120-124.

Wright, P. and Reid, F. Written information: Some alternatives to
prose for expressing the outcomes of complex contingencies.
Journal of Applied Psychology, 1973, 57(2), 160-166.

~ I L

-181-

USI Design Guidelines -- Changes/Additions

Code number, if referring to a guideline in this report: ______

Proposed wording for guideline: ___ _______________

Example: __ _

Exception:_______________________________

Comment _____________________________

References to previously published recommendations or supporting data:

Please mail to: Your name: ___________

Sidney L. Smith
The MITRE Corporation Date: ___________

Bedford, MA 01730 USA

- A
FIME-

